CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Mario Carneiro
-/
import logic.basic data.sum data.set.basic algebra.order
open function

/- TODO: automatic construction of dual definitions / theorems -/

universes u v w
variables {α : Type u} {β : Type v} {γ : Type w} {r : α → α → Prop}

theorem ge_of_eq [preorder α] {a b : α} : a = b → a ≥ b :=
λ h, h ▸ le_refl a

theorem is_refl.swap (r) [is_refl α r] : is_refl α (swap r) := ⟨refl_of r⟩
theorem is_irrefl.swap (r) [is_irrefl α r] : is_irrefl α (swap r) := ⟨irrefl_of r⟩
theorem is_trans.swap (r) [is_trans α r] : is_trans α (swap r) :=
⟨λ a b c h₁ h₂, trans_of r h₂ h₁⟩
theorem is_antisymm.swap (r) [is_antisymm α r] : is_antisymm α (swap r) :=
⟨λ a b h₁ h₂, antisymm h₂ h₁⟩
theorem is_asymm.swap (r) [is_asymm α r] : is_asymm α (swap r) :=
⟨λ a b h₁ h₂, asymm_of r h₂ h₁⟩
theorem is_total.swap (r) [is_total α r] : is_total α (swap r) :=
⟨λ a b, (total_of r a b).swap⟩
theorem is_trichotomous.swap (r) [is_trichotomous α r] : is_trichotomous α (swap r) :=
⟨λ a b, by simpa [swap, or.comm, or.left_comm] using trichotomous_of r a b⟩
theorem is_preorder.swap (r) [is_preorder α r] : is_preorder α (swap r) :=
{..@is_refl.swap α r _, ..@is_trans.swap α r _}
theorem is_strict_order.swap (r) [is_strict_order α r] : is_strict_order α (swap r) :=
{..@is_irrefl.swap α r _, ..@is_trans.swap α r _}
theorem is_partial_order.swap (r) [is_partial_order α r] : is_partial_order α (swap r) :=
{..@is_preorder.swap α r _, ..@is_antisymm.swap α r _}
theorem is_total_preorder.swap (r) [is_total_preorder α r] : is_total_preorder α (swap r) :=
{..@is_preorder.swap α r _, ..@is_total.swap α r _}
theorem is_linear_order.swap (r) [is_linear_order α r] : is_linear_order α (swap r) :=
{..@is_partial_order.swap α r _, ..@is_total.swap α r _}

lemma antisymm_of_asymm (r) [is_asymm α r] : is_antisymm α r :=
⟨λ x y h₁ h₂, (asymm h₁ h₂).elim⟩

/- Convert algebraic structure style to explicit relation style typeclasses -/
instance [preorder α] : is_refl α (≤) := ⟨le_refl⟩
instance [preorder α] : is_refl α (≥) := is_refl.swap _
instance [preorder α] : is_trans α (≤) := ⟨@le_trans _ _⟩
instance [preorder α] : is_trans α (≥) := is_trans.swap _
instance [preorder α] : is_preorder α (≤) := {}
instance [preorder α] : is_preorder α (≥) := {}
instance [preorder α] : is_irrefl α (<) := ⟨lt_irrefl⟩
instance [preorder α] : is_irrefl α (>) := is_irrefl.swap _
instance [preorder α] : is_trans α (<) := ⟨@lt_trans _ _⟩
instance [preorder α] : is_trans α (>) := is_trans.swap _
instance [preorder α] : is_asymm α (<) := ⟨@lt_asymm _ _⟩
instance [preorder α] : is_asymm α (>) := is_asymm.swap _
instance [preorder α] : is_antisymm α (<) := antisymm_of_asymm _
instance [preorder α] : is_antisymm α (>) := antisymm_of_asymm _
instance [preorder α] : is_strict_order α (<) := {}
instance [preorder α] : is_strict_order α (>) := {}
instance preorder.is_total_preorder [preorder α] [is_total α (≤)] : is_total_preorder α (≤) := {}
instance [partial_order α] : is_antisymm α (≤) := ⟨@le_antisymm _ _⟩
instance [partial_order α] : is_antisymm α (≥) := is_antisymm.swap _
instance [partial_order α] : is_partial_order α (≤) := {}
instance [partial_order α] : is_partial_order α (≥) := {}
instance [linear_order α] : is_total α (≤) := ⟨le_total⟩
instance [linear_order α] : is_total α (≥) := is_total.swap _
instance linear_order.is_total_preorder [linear_order α] : is_total_preorder α (≤) := by apply_instance
instance [linear_order α] : is_total_preorder α (≥) := {}
instance [linear_order α] : is_linear_order α (≤) := {}
instance [linear_order α] : is_linear_order α (≥) := {}
instance [linear_order α] : is_trichotomous α (<) := ⟨lt_trichotomy⟩
instance [linear_order α] : is_trichotomous α (>) := is_trichotomous.swap _

theorem preorder.ext {α} {A B : preorder α}
  (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B :=
begin
  resetI, cases A, cases B, congr,
  { funext x y, exact propext (H x y) },
  { funext x y,
    dsimp [(≤)] at A_lt_iff_le_not_le B_lt_iff_le_not_le H,
    simp [A_lt_iff_le_not_le, B_lt_iff_le_not_le, H] },
end

theorem partial_order.ext {α} {A B : partial_order α}
  (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B :=
by haveI this := preorder.ext H;
   cases A; cases B; injection this; congr'

theorem linear_order.ext {α} {A B : linear_order α}
  (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B :=
by haveI this := partial_order.ext H;
   cases A; cases B; injection this; congr'

/-- Given an order `R` on `β` and a function `f : α → β`,
  the preimage order on `α` is defined by `x ≤ y ↔ f x ≤ f y`.
  It is the unique order on `α` making `f` an order embedding
  (assuming `f` is injective). -/
@[simp] def order.preimage {α β} (f : α → β) (s : β → β → Prop) (x y : α) := s (f x) (f y)

infix ` ⁻¹'o `:80 := order.preimage

/-- The preimage of a decidable order is decidable. -/
instance order.preimage.decidable {α β} (f : α → β) (s : β → β → Prop) [H : decidable_rel s] :
  decidable_rel (f ⁻¹'o s) :=
λ x y, H _ _

section monotone
variables [preorder α] [preorder β] [preorder γ]

/-- A function between preorders is monotone if
  `a ≤ b` implies `f a ≤ f b`. -/
def monotone (f : α → β) := ∀⦃a b⦄, a ≤ b → f a ≤ f b

theorem monotone_id : @monotone α α _ _ id := assume x y h, h

theorem monotone_const {b : β} : monotone (λ(a:α), b) := assume x y h, le_refl b

protected theorem monotone.comp {g : β → γ} {f : α → β} (m_g : monotone g) (m_f : monotone f) :
  monotone (g ∘ f) :=
assume a b h, m_g (m_f h)

lemma monotone_of_monotone_nat {f : ℕ → α} (hf : ∀n, f n ≤ f (n + 1)) :
  monotone f | n m h :=
begin
  induction h,
  { refl },
  { transitivity, assumption, exact hf _ }
end

lemma reflect_lt {α β} [linear_order α] [preorder β] {f : α → β} (hf : monotone f)
  {x x' : α} (h : f x < f x') : x < x' :=
by { rw [← not_le], intro h', apply not_le_of_lt h, exact hf h' }

end monotone

/-- Type tag for a set with dual order: `≤` means `≥` and `<` means `>`. -/
def order_dual (α : Type*) := α

namespace order_dual
instance (α : Type*) [has_le α] : has_le (order_dual α) := ⟨λx y:α, y ≤ x⟩
instance (α : Type*) [has_lt α] : has_lt (order_dual α) := ⟨λx y:α, y < x⟩

@[simp] lemma dual_le [has_le α] {a b : α} :
  @has_le.le (order_dual α) _ a b ↔ @has_le.le α _ b a := iff.rfl

@[simp] lemma dual_lt [has_lt α] {a b : α} :
  @has_lt.lt (order_dual α) _ a b ↔ @has_lt.lt α _ b a := iff.rfl

instance (α : Type*) [preorder α] : preorder (order_dual α) :=
{ le_refl  := le_refl,
  le_trans := assume a b c hab hbc, le_trans hbc hab,
  lt_iff_le_not_le := λ _ _, lt_iff_le_not_le,
  .. order_dual.has_le α,
  .. order_dual.has_lt α }

instance (α : Type*) [partial_order α] : partial_order (order_dual α) :=
{ le_antisymm := assume a b hab hba, @le_antisymm α _ a b hba hab, .. order_dual.preorder α }

instance (α : Type*) [linear_order α] : linear_order (order_dual α) :=
{ le_total := assume a b:α, le_total b a, .. order_dual.partial_order α }

instance (α : Type*) [decidable_linear_order α] : decidable_linear_order (order_dual α) :=
{ decidable_le := show decidable_rel (λa b:α, b ≤ a), by apply_instance,
  decidable_lt := show decidable_rel (λa b:α, b < a), by apply_instance,
  .. order_dual.linear_order α }

instance : Π [inhabited α], inhabited (order_dual α) := id

end order_dual

/- order instances on the function space -/

instance pi.preorder {ι : Type u} {α : ι → Type v} [∀i, preorder (α i)] : preorder (Πi, α i) :=
{ le       := λx y, ∀i, x i ≤ y i,
  le_refl  := assume a i, le_refl (a i),
  le_trans := assume a b c h₁ h₂ i, le_trans (h₁ i) (h₂ i) }

instance pi.partial_order {ι : Type u} {α : ι → Type v} [∀i, partial_order (α i)] : partial_order (Πi, α i) :=
{ le_antisymm := λf g h1 h2, funext (λb, le_antisymm (h1 b) (h2 b)),
  ..pi.preorder }

theorem comp_le_comp_left_of_monotone [preorder α] [preorder β]
  {f : β → α} {g h : γ → β} (m_f : monotone f) (le_gh : g ≤ h) : has_le.le.{max w u} (f ∘ g) (f ∘ h) :=
assume x, m_f (le_gh x)

section monotone
variables [preorder α] [preorder γ]

theorem monotone_lam {f : α → β → γ} (m : ∀b, monotone (λa, f a b)) : monotone f :=
assume a a' h b, m b h

theorem monotone_app (f : β → α → γ) (b : β) (m : monotone (λa b, f b a)) : monotone (f b) :=
assume a a' h, m h b

end monotone

def preorder.lift {α β} (f : α → β) (i : preorder β) : preorder α :=
by exactI
{ le := λx y, f x ≤ f y,
  le_refl := λ a, le_refl _,
  le_trans := λ a b c, le_trans,
  lt := λx y, f x < f y,
  lt_iff_le_not_le := λ a b, lt_iff_le_not_le }

def partial_order.lift {α β} (f : α → β) (inj : injective f) (i : partial_order β) :
  partial_order α :=
by exactI
{ le_antisymm := λ a b h₁ h₂, inj (le_antisymm h₁ h₂), .. preorder.lift f (by apply_instance) }

def linear_order.lift {α β} (f : α → β) (inj : injective f) (i : linear_order β) :
  linear_order α :=
by exactI
{ le_total := λx y, le_total (f x) (f y), .. partial_order.lift f inj (by apply_instance) }

def decidable_linear_order.lift {α β} (f : α → β) (inj : injective f)
  (i : decidable_linear_order β) : decidable_linear_order α :=
by exactI
{ decidable_le := λ x y, show decidable (f x ≤ f y), by apply_instance,
  decidable_lt := λ x y, show decidable (f x < f y), by apply_instance,
  decidable_eq := λ x y, decidable_of_iff _ ⟨@inj x y, congr_arg f⟩,
  .. linear_order.lift f inj (by apply_instance) }

instance subtype.preorder {α} [i : preorder α] (p : α → Prop) : preorder (subtype p) :=
preorder.lift subtype.val i

instance subtype.partial_order {α} [i : partial_order α] (p : α → Prop) : partial_order (subtype p) :=
partial_order.lift subtype.val subtype.val_injective i

instance subtype.linear_order {α} [i : linear_order α] (p : α → Prop) : linear_order (subtype p) :=
linear_order.lift subtype.val subtype.val_injective i

instance subtype.decidable_linear_order {α} [i : decidable_linear_order α] (p : α → Prop) :
  decidable_linear_order (subtype p) :=
decidable_linear_order.lift subtype.val subtype.val_injective i

instance prod.has_le (α : Type u) (β : Type v) [has_le α] [has_le β] : has_le (α × β) :=
⟨λp q, p.1 ≤ q.1 ∧ p.2 ≤ q.2⟩

instance prod.preorder (α : Type u) (β : Type v) [preorder α] [preorder β] : preorder (α × β) :=
{ le_refl  := assume ⟨a, b⟩, ⟨le_refl a, le_refl b⟩,
  le_trans := assume ⟨a, b⟩ ⟨c, d⟩ ⟨e, f⟩ ⟨hac, hbd⟩ ⟨hce, hdf⟩,
    ⟨le_trans hac hce, le_trans hbd hdf⟩,
  .. prod.has_le α β }

/-- The pointwise partial order on a product.
    (The lexicographic ordering is defined in order/lexicographic.lean, and the instances are
    available via the type synonym `lex α β = α × β`.) -/
instance prod.partial_order (α : Type u) (β : Type v) [partial_order α] [partial_order β] :
  partial_order (α × β) :=
{ le_antisymm := assume ⟨a, b⟩ ⟨c, d⟩ ⟨hac, hbd⟩ ⟨hca, hdb⟩,
    prod.ext (le_antisymm hac hca) (le_antisymm hbd hdb),
  .. prod.preorder α β }

/- additional order classes -/

/-- order without a top element; somtimes called cofinal -/
class no_top_order (α : Type u) [preorder α] : Prop :=
(no_top : ∀a:α, ∃a', a < a')

lemma no_top [preorder α] [no_top_order α] : ∀a:α, ∃a', a < a' :=
no_top_order.no_top

/-- order without a bottom element; somtimes called coinitial or dense -/
class no_bot_order (α : Type u) [preorder α] : Prop :=
(no_bot : ∀a:α, ∃a', a' < a)

lemma no_bot [preorder α] [no_bot_order α] : ∀a:α, ∃a', a' < a :=
no_bot_order.no_bot

instance order_dual.no_top_order (α : Type u) [preorder α] [no_bot_order α] :
  no_top_order (order_dual α) :=
⟨λ a, @no_bot α _ _ a⟩

instance order_dual.no_bot_order (α : Type u) [preorder α] [no_top_order α] :
  no_bot_order (order_dual α) :=
⟨λ a, @no_top α _ _ a⟩

/-- An order is dense if there is an element between any pair of distinct elements. -/
class densely_ordered (α : Type u) [preorder α] : Prop :=
(dense : ∀a₁ a₂:α, a₁ < a₂ → ∃a, a₁ < a ∧ a < a₂)

lemma dense [preorder α] [densely_ordered α] : ∀{a₁ a₂:α}, a₁ < a₂ → ∃a, a₁ < a ∧ a < a₂ :=
densely_ordered.dense

instance order_dual.densely_ordered (α : Type u) [preorder α] [densely_ordered α] :
  densely_ordered (order_dual α) :=
⟨λ a₁ a₂ ha, (@dense α _ _ _ _ ha).imp $ λ a, and.symm⟩

lemma le_of_forall_le_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α} (h : ∀a₃>a₂, a₁ ≤ a₃) :
  a₁ ≤ a₂ :=
le_of_not_gt $ assume ha,
  let ⟨a, ha₁, ha₂⟩ := dense ha in
  lt_irrefl a $ lt_of_lt_of_le ‹a < a₁› (h _ ‹a₂ < a›)

lemma eq_of_le_of_forall_le_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α}
  (h₁ : a₂ ≤ a₁) (h₂ : ∀a₃>a₂, a₁ ≤ a₃) : a₁ = a₂ :=
le_antisymm (le_of_forall_le_of_dense h₂) h₁

lemma le_of_forall_ge_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α}(h : ∀a₃<a₁, a₂ ≥ a₃) :
  a₁ ≤ a₂ :=
le_of_not_gt $ assume ha,
  let ⟨a, ha₁, ha₂⟩ := dense ha in
  lt_irrefl a $ lt_of_le_of_lt (h _ ‹a < a₁›) ‹a₂ < a›

lemma eq_of_le_of_forall_ge_of_dense [linear_order α] [densely_ordered α] {a₁ a₂ : α}
  (h₁ : a₂ ≤ a₁) (h₂ : ∀a₃<a₁, a₂ ≥ a₃) : a₁ = a₂ :=
le_antisymm (le_of_forall_ge_of_dense h₂) h₁

lemma dense_or_discrete [linear_order α] (a₁ a₂ : α) :
  (∃a, a₁ < a ∧ a < a₂) ∨ ((∀a>a₁, a ≥ a₂) ∧ (∀a<a₂, a ≤ a₁)) :=
classical.or_iff_not_imp_left.2 $ assume h,
  ⟨assume a ha₁, le_of_not_gt $ assume ha₂, h ⟨a, ha₁, ha₂⟩,
    assume a ha₂, le_of_not_gt $ assume ha₁, h ⟨a, ha₁, ha₂⟩⟩

lemma trans_trichotomous_left [is_trans α r] [is_trichotomous α r] {a b c : α} :
  ¬r b a → r b c → r a c :=
begin
  intros h₁ h₂, rcases trichotomous_of r a b with h₃|h₃|h₃,
  exact trans h₃ h₂, rw h₃, exact h₂, exfalso, exact h₁ h₃
end

lemma trans_trichotomous_right [is_trans α r] [is_trichotomous α r] {a b c : α} :
  r a b → ¬r c b → r a c :=
begin
  intros h₁ h₂, rcases trichotomous_of r b c with h₃|h₃|h₃,
  exact trans h₁ h₃, rw ←h₃, exact h₁, exfalso, exact h₂ h₃
end

variables {s : β → β → Prop} {t : γ → γ → Prop}

theorem is_irrefl_of_is_asymm [is_asymm α r] : is_irrefl α r :=
⟨λ a h, asymm h h⟩

/-- Construct a partial order from a `is_strict_order` relation -/
def partial_order_of_SO (r) [is_strict_order α r] : partial_order α :=
{ le := λ x y, x = y ∨ r x y,
  lt := r,
  le_refl := λ x, or.inl rfl,
  le_trans := λ x y z h₁ h₂,
    match y, z, h₁, h₂ with
    | _, _, or.inl rfl, h₂ := h₂
    | _, _, h₁, or.inl rfl := h₁
    | _, _, or.inr h₁, or.inr h₂ := or.inr (trans h₁ h₂)
    end,
  le_antisymm := λ x y h₁ h₂,
    match y, h₁, h₂ with
    | _, or.inl rfl, h₂ := rfl
    | _, h₁, or.inl rfl := rfl
    | _, or.inr h₁, or.inr h₂ := (asymm h₁ h₂).elim
    end,
  lt_iff_le_not_le := λ x y,
    ⟨λ h, ⟨or.inr h, not_or
      (λ e, by rw e at h; exact irrefl _ h)
      (asymm h)⟩,
    λ ⟨h₁, h₂⟩, h₁.resolve_left (λ e, h₂ $ e ▸ or.inl rfl)⟩ }

section prio
set_option default_priority 100 -- see Note [default priority]
/-- This is basically the same as `is_strict_total_order`, but that definition is
  in Type (probably by mistake) and also has redundant assumptions. -/
@[algebra] class is_strict_total_order' (α : Type u) (lt : α → α → Prop) extends is_trichotomous α lt, is_strict_order α lt : Prop.
end prio

/-- Construct a linear order from a `is_strict_total_order'` relation -/
def linear_order_of_STO' (r) [is_strict_total_order' α r] : linear_order α :=
{ le_total := λ x y,
    match y, trichotomous_of r x y with
    | y, or.inl h := or.inl (or.inr h)
    | _, or.inr (or.inl rfl) := or.inl (or.inl rfl)
    | _, or.inr (or.inr h) := or.inr (or.inr h)
    end,
  ..partial_order_of_SO r }

/-- Construct a decidable linear order from a `is_strict_total_order'` relation -/
def decidable_linear_order_of_STO' (r) [is_strict_total_order' α r] [decidable_rel r] : decidable_linear_order α :=
by letI LO := linear_order_of_STO' r; exact
{ decidable_le := λ x y, decidable_of_iff (¬ r y x) (@not_lt _ _ y x),
  ..LO }

noncomputable def classical.DLO (α) [LO : linear_order α] : decidable_linear_order α :=
{ decidable_le := classical.dec_rel _, ..LO }

theorem is_strict_total_order'.swap (r) [is_strict_total_order' α r] : is_strict_total_order' α (swap r) :=
{..is_trichotomous.swap r, ..is_strict_order.swap r}

instance [linear_order α] : is_strict_total_order' α (<) := {}

/-- A connected order is one satisfying the condition `a < c → a < b ∨ b < c`.
  This is recognizable as an intuitionistic substitute for `a ≤ b ∨ b ≤ a` on
  the constructive reals, and is also known as negative transitivity,
  since the contrapositive asserts transitivity of the relation `¬ a < b`.  -/
@[algebra] class is_order_connected (α : Type u) (lt : α → α → Prop) : Prop :=
(conn : ∀ a b c, lt a c → lt a b ∨ lt b c)

theorem is_order_connected.neg_trans {r : α → α → Prop} [is_order_connected α r]
  {a b c} (h₁ : ¬ r a b) (h₂ : ¬ r b c) : ¬ r a c :=
mt (is_order_connected.conn a b c) $ by simp [h₁, h₂]

theorem is_strict_weak_order_of_is_order_connected [is_asymm α r]
  [is_order_connected α r] : is_strict_weak_order α r :=
{ trans := λ a b c h₁ h₂, (is_order_connected.conn _ c _ h₁).resolve_right (asymm h₂),
  incomp_trans := λ a b c ⟨h₁, h₂⟩ ⟨h₃, h₄⟩,
    ⟨is_order_connected.neg_trans h₁ h₃, is_order_connected.neg_trans h₄ h₂⟩,
  ..@is_irrefl_of_is_asymm α r _ }

@[priority 100] -- see Note [lower instance priority]
instance is_order_connected_of_is_strict_total_order'
  [is_strict_total_order' α r] : is_order_connected α r :=
⟨λ a b c h, (trichotomous _ _).imp_right (λ o,
  o.elim (λ e, e ▸ h) (λ h', trans h' h))⟩

@[priority 100] -- see Note [lower instance priority]
instance is_strict_total_order_of_is_strict_total_order'
  [is_strict_total_order' α r] : is_strict_total_order α r :=
{..is_strict_weak_order_of_is_order_connected}

instance [linear_order α] : is_strict_total_order α (<) := by apply_instance
instance [linear_order α] : is_order_connected α (<) := by apply_instance
instance [linear_order α] : is_incomp_trans α (<) := by apply_instance
instance [linear_order α] : is_strict_weak_order α (<) := by apply_instance

/-- An extensional relation is one in which an element is determined by its set
  of predecessors. It is named for the `x ∈ y` relation in set theory, whose
  extensionality is one of the first axioms of ZFC. -/
@[algebra] class is_extensional (α : Type u) (r : α → α → Prop) : Prop :=
(ext : ∀ a b, (∀ x, r x a ↔ r x b) → a = b)

@[priority 100] -- see Note [lower instance priority]
instance is_extensional_of_is_strict_total_order'
  [is_strict_total_order' α r] : is_extensional α r :=
⟨λ a b H, ((@trichotomous _ r _ a b)
  .resolve_left $ mt (H _).2 (irrefl a))
  .resolve_right $ mt (H _).1 (irrefl b)⟩

section prio
set_option default_priority 100 -- see Note [default priority]
/-- A well order is a well-founded linear order. -/
@[algebra] class is_well_order (α : Type u) (r : α → α → Prop) extends is_strict_total_order' α r : Prop :=
(wf : well_founded r)
end prio

@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_strict_total_order {α} (r : α → α → Prop) [is_well_order α r] : is_strict_total_order α r := by apply_instance
@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_extensional {α} (r : α → α → Prop) [is_well_order α r] : is_extensional α r := by apply_instance
@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_trichotomous {α} (r : α → α → Prop) [is_well_order α r] : is_trichotomous α r := by apply_instance
@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_trans {α} (r : α → α → Prop) [is_well_order α r] : is_trans α r := by apply_instance
@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_irrefl {α} (r : α → α → Prop) [is_well_order α r] : is_irrefl α r := by apply_instance
@[priority 100] -- see Note [lower instance priority]
instance is_well_order.is_asymm {α} (r : α → α → Prop) [is_well_order α r] : is_asymm α r := by apply_instance

noncomputable def decidable_linear_order_of_is_well_order (r : α → α → Prop) [is_well_order α r] :
  decidable_linear_order α :=
by { haveI := linear_order_of_STO' r, exact classical.DLO α }

instance empty_relation.is_well_order [subsingleton α] : is_well_order α empty_relation :=
{ trichotomous := λ a b, or.inr $ or.inl $ subsingleton.elim _ _,
  irrefl       := λ a, id,
  trans        := λ a b c, false.elim,
  wf           := ⟨λ a, ⟨_, λ y, false.elim⟩⟩ }

instance nat.lt.is_well_order : is_well_order ℕ (<) := ⟨nat.lt_wf⟩

instance sum.lex.is_well_order [is_well_order α r] [is_well_order β s] : is_well_order (α ⊕ β) (sum.lex r s) :=
{ trichotomous := λ a b, by cases a; cases b; simp; apply trichotomous,
  irrefl       := λ a, by cases a; simp; apply irrefl,
  trans        := λ a b c, by cases a; cases b; simp; cases c; simp; apply trans,
  wf           := sum.lex_wf (is_well_order.wf r) (is_well_order.wf s) }

instance prod.lex.is_well_order [is_well_order α r] [is_well_order β s] : is_well_order (α × β) (prod.lex r s) :=
{ trichotomous := λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩,
    match @trichotomous _ r _ a₁ b₁ with
    | or.inl h₁ := or.inl $ prod.lex.left _ _ _ h₁
    | or.inr (or.inr h₁) := or.inr $ or.inr $ prod.lex.left _ _ _ h₁
    | or.inr (or.inl e) := e ▸  match @trichotomous _ s _ a₂ b₂ with
      | or.inl h := or.inl $ prod.lex.right _ _ h
      | or.inr (or.inr h) := or.inr $ or.inr $ prod.lex.right _ _ h
      | or.inr (or.inl e) := e ▸ or.inr $ or.inl rfl
      end
    end,
  irrefl := λ ⟨a₁, a₂⟩ h, by cases h with _ _ _ _ h _ _ _ h;
     [exact irrefl _ h, exact irrefl _ h],
  trans := λ a b c h₁ h₂, begin
    cases h₁ with a₁ a₂ b₁ b₂ ab a₁ b₁ b₂ ab;
    cases h₂ with _ _ c₁ c₂ bc _ _ c₂ bc,
    { exact prod.lex.left _ _ _ (trans ab bc) },
    { exact prod.lex.left _ _ _ ab },
    { exact prod.lex.left _ _ _ bc },
    { exact prod.lex.right _ _ (trans ab bc) }
  end,
  wf := prod.lex_wf (is_well_order.wf r) (is_well_order.wf s) }

/-- An unbounded or cofinal set -/
def unbounded (r : α → α → Prop) (s : set α) : Prop := ∀ a, ∃ b ∈ s, ¬ r b a
/-- A bounded or final set -/
def bounded (r : α → α → Prop) (s : set α) : Prop := ∃a, ∀ b ∈ s, r b a

@[simp] lemma not_bounded_iff {r : α → α → Prop} (s : set α) : ¬bounded r s ↔ unbounded r s :=
begin
  classical,
  simp only [bounded, unbounded, not_forall, not_exists, exists_prop, not_and, not_not]
end

@[simp] lemma not_unbounded_iff {r : α → α → Prop} (s : set α) : ¬unbounded r s ↔ bounded r s :=
by { classical, rw [not_iff_comm, not_bounded_iff] }

namespace well_founded
/-- If `r` is a well founded relation, then any nonempty set has a minimum element
with respect to `r`. -/
theorem has_min {α} {r : α → α → Prop} (H : well_founded r)
  (s : set α) : s.nonempty → ∃ a ∈ s, ∀ x ∈ s, ¬ r x a
| ⟨a, ha⟩ := (acc.rec_on (H.apply a) $ λ x _ IH, classical.not_imp_not.1 $ λ hne hx, hne $
  ⟨x, hx, λ y hy hyx, hne $ IH y hyx hy⟩) ha

/-- The minimum element of a nonempty set in a well-founded order -/
noncomputable def min {α} {r : α → α → Prop} (H : well_founded r)
  (p : set α) (h : p.nonempty) : α :=
classical.some (H.has_min p h)

theorem min_mem {α} {r : α → α → Prop} (H : well_founded r)
  (p : set α) (h : p.nonempty) : H.min p h ∈ p :=
let ⟨h, _⟩ := classical.some_spec (H.has_min p h) in h

theorem not_lt_min {α} {r : α → α → Prop} (H : well_founded r)
  (p : set α) (h : p.nonempty) {x} (xp : x ∈ p) : ¬ r x (H.min p h) :=
let ⟨_, h'⟩ := classical.some_spec (H.has_min p h) in h' _ xp

open set
protected noncomputable def sup {α} {r : α → α → Prop} (wf : well_founded r) (s : set α)
  (h : bounded r s) : α :=
wf.min { x | ∀a ∈ s, r a x } h

protected lemma lt_sup {α} {r : α → α → Prop} (wf : well_founded r) {s : set α} (h : bounded r s)
  {x} (hx : x ∈ s) : r x (wf.sup s h) :=
min_mem wf { x | ∀a ∈ s, r a x } h x hx

section
open_locale classical
protected noncomputable def succ {α} {r : α → α → Prop} (wf : well_founded r) (x : α) : α :=
if h : ∃y, r x y then wf.min { y | r x y } h else x

protected lemma lt_succ {α} {r : α → α → Prop} (wf : well_founded r) {x : α} (h : ∃y, r x y) :
  r x (wf.succ x) :=
by { rw [well_founded.succ, dif_pos h], apply min_mem }
end

protected lemma lt_succ_iff {α} {r : α → α → Prop} [wo : is_well_order α r] {x : α} (h : ∃y, r x y)
  (y : α) : r y (wo.wf.succ x) ↔ r y x ∨ y = x :=
begin
  split,
  { intro h', have : ¬r x y,
    { intro hy, rw [well_founded.succ, dif_pos] at h',
      exact wo.wf.not_lt_min _ h hy h' },
    rcases trichotomous_of r x y with hy | hy | hy,
    exfalso, exact this hy,
    right, exact hy.symm,
    left, exact hy },
  rintro (hy | rfl), exact trans hy (wo.wf.lt_succ h), exact wo.wf.lt_succ h
end

end well_founded

variable (r)
local infix ` ≼ ` : 50 := r

/-- A family of elements of α is directed (with respect to a relation `≼` on α)
  if there is a member of the family `≼`-above any pair in the family.  -/
def directed {ι : Sort v} (f : ι → α) := ∀x y, ∃z, f x ≼ f z ∧ f y ≼ f z
/-- A subset of α is directed if there is an element of the set `≼`-above any
  pair of elements in the set. -/
def directed_on (s : set α) := ∀ (x ∈ s) (y ∈ s), ∃z ∈ s, x ≼ z ∧ y ≼ z

theorem directed_on_iff_directed {s} : @directed_on α r s ↔ directed r (coe : s → α) :=
by simp [directed, directed_on]; refine ball_congr (λ x hx, by simp; refl)

theorem directed_comp {ι} (f : ι → β) (g : β → α) :
  directed r (g ∘ f) ↔ directed (g ⁻¹'o r) f := iff.rfl

theorem directed_mono {s : α → α → Prop} {ι} (f : ι → α)
  (H : ∀ a b, r a b → s a b) (h : directed r f) : directed s f :=
λ a b, let ⟨c, h₁, h₂⟩ := h a b in ⟨c, H _ _ h₁, H _ _ h₂⟩

theorem directed.mono_comp {ι} {rb : β → β → Prop} {g : α → β} {f : ι → α}
  (hg : ∀ ⦃x y⦄, x ≼ y → rb (g x) (g y)) (hf : directed r f) :
  directed rb (g ∘ f) :=
(directed_comp rb f g).2 $ directed_mono _ _ hg hf

section prio
set_option default_priority 100 -- see Note [default priority]
class directed_order (α : Type u) extends preorder α :=
(directed : ∀ i j : α, ∃ k, i ≤ k ∧ j ≤ k)
end prio