Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
Adjoining roots of polynomials
-/
import data.polynomial ring_theory.principal_ideal_domain
noncomputable theory
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open polynomial ideal
def adjoin_root [comm_ring α] (f : polynomial α) : Type u :=
ideal.quotient (span {f} : ideal (polynomial α))
namespace adjoin_root
section comm_ring
variables [comm_ring α] (f : polynomial α)
instance : comm_ring (adjoin_root f) := ideal.quotient.comm_ring _
instance : inhabited (adjoin_root f) := ⟨0⟩
instance : decidable_eq (adjoin_root f) := classical.dec_eq _
variable {f}
def mk : polynomial α → adjoin_root f := ideal.quotient.mk _
def root : adjoin_root f := mk X
def of (x : α) : adjoin_root f := mk (C x)
instance adjoin_root.has_coe_t : has_coe_t α (adjoin_root f) := ⟨of⟩
instance mk.is_ring_hom : is_ring_hom (mk : polynomial α → adjoin_root f) :=
ideal.quotient.is_ring_hom_mk _
@[simp] lemma mk_self : (mk f : adjoin_root f) = 0 :=
quotient.sound' (mem_span_singleton.2 $ by simp)
instance : is_ring_hom (coe : α → adjoin_root f) :=
@is_ring_hom.comp _ _ _ _ C _ _ _ mk mk.is_ring_hom
lemma eval₂_root (f : polynomial α) : f.eval₂ coe (root : adjoin_root f) = 0 :=
quotient.induction_on' (root : adjoin_root f)
(λ (g : polynomial α) (hg : mk g = mk X),
show finsupp.sum f (λ (e : ℕ) (a : α), mk (C a) * mk g ^ e) = 0,
by simp only [hg, (is_semiring_hom.map_pow (mk : polynomial α → adjoin_root f) _ _).symm,
(is_ring_hom.map_mul (mk : polynomial α → adjoin_root f)).symm];
rw [finsupp.sum, f.support.sum_hom (mk : polynomial α → adjoin_root f),
show finset.sum _ _ = _, from sum_C_mul_X_eq _, mk_self])
(show (root : adjoin_root f) = mk X, from rfl)
lemma is_root_root (f : polynomial α) : is_root (f.map coe) (root : adjoin_root f) :=
by rw [is_root, eval_map, eval₂_root]
variables [comm_ring β]
def lift (i : α → β) [is_ring_hom i] (x : β) (h : f.eval₂ i x = 0) : (adjoin_root f) → β :=
ideal.quotient.lift _ (eval₂ i x) $ λ g H,
begin
simp [mem_span_singleton] at H,
cases H with y H,
rw [H, eval₂_mul],
simp [h]
end
variables {i : α → β} [is_ring_hom i] {a : β} {h : f.eval₂ i a = 0}
@[simp] lemma lift_mk {g : polynomial α} : lift i a h (mk g) = g.eval₂ i a :=
ideal.quotient.lift_mk
@[simp] lemma lift_root : lift i a h root = a := by simp [root, h]
@[simp] lemma lift_of {x : α} : lift i a h x = i x :=
by show lift i a h (ideal.quotient.mk _ (C x)) = i x;
convert ideal.quotient.lift_mk; simp
instance is_ring_hom_lift : is_ring_hom (lift i a h) :=
by unfold lift; apply_instance
end comm_ring
variables [discrete_field α] {f : polynomial α} [irreducible f]
instance is_maximal_span : is_maximal (span {f} : ideal (polynomial α)) :=
principal_ideal_domain.is_maximal_of_irreducible ‹irreducible f›
noncomputable instance field : discrete_field (adjoin_root f) :=
ideal.quotient.field (span {f} : ideal (polynomial α))
lemma coe_injective : function.injective (coe : α → adjoin_root f) :=
is_ring_hom.injective _
lemma mul_div_root_cancel (f : polynomial α) [irreducible f] :
(X - C (root : adjoin_root f)) * (f.map coe / (X - C root)) = f.map coe :=
mul_div_eq_iff_is_root.2 $ is_root_root _
end adjoin_root