Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau Algebra over Commutative Ring (under category) -/ import data.polynomial data.mv_polynomial import data.complex.basic import data.matrix.basic import linear_algebra.tensor_product import ring_theory.subring noncomputable theory universes u v w u₁ v₁ open lattice open_locale tensor_product section prio -- We set this priority to 0 later in this file set_option default_priority 200 -- see Note [default priority] /-- The category of R-algebras where R is a commutative ring is the under category R ↓ CRing. In the categorical setting we have a forgetful functor R-Alg ⥤ R-Mod. However here it extends module in order to preserve definitional equality in certain cases. -/ class algebra (R : Type u) (A : Type v) [comm_ring R] [ring A] extends has_scalar R A := (to_fun : R → A) [hom : is_ring_hom to_fun] (commutes' : ∀ r x, x * to_fun r = to_fun r * x) (smul_def' : ∀ r x, r • x = to_fun r * x) end prio def algebra_map {R : Type u} (A : Type v) [comm_ring R] [ring A] [algebra R A] (x : R) : A := algebra.to_fun A x namespace algebra variables {R : Type u} {S : Type v} {A : Type w} variables [comm_ring R] [comm_ring S] [ring A] [algebra R A] instance : is_ring_hom (algebra_map A : R → A) := algebra.hom _ A variables (A) @[simp] lemma map_add (r s : R) : algebra_map A (r + s) = algebra_map A r + algebra_map A s := is_ring_hom.map_add _ @[simp] lemma map_neg (r : R) : algebra_map A (-r) = -algebra_map A r := is_ring_hom.map_neg _ @[simp] lemma map_sub (r s : R) : algebra_map A (r - s) = algebra_map A r - algebra_map A s := is_ring_hom.map_sub _ @[simp] lemma map_mul (r s : R) : algebra_map A (r * s) = algebra_map A r * algebra_map A s := is_ring_hom.map_mul _ variables (R) @[simp] lemma map_zero : algebra_map A (0 : R) = 0 := is_ring_hom.map_zero _ @[simp] lemma map_one : algebra_map A (1 : R) = 1 := is_ring_hom.map_one _ variables {R A} /-- Creating an algebra from a morphism in CRing. -/ def of_ring_hom (i : R → S) (hom : is_ring_hom i) : algebra R S := { smul := λ c x, i c * x, to_fun := i, commutes' := λ _ _, mul_comm _ _, smul_def' := λ c x, rfl } lemma smul_def'' (r : R) (x : A) : r • x = algebra_map A r * x := algebra.smul_def' r x @[priority 200] -- see Note [lower instance priority] instance to_module : module R A := { one_smul := by simp [smul_def''], mul_smul := by simp [smul_def'', mul_assoc], smul_add := by simp [smul_def'', mul_add], smul_zero := by simp [smul_def''], add_smul := by simp [smul_def'', add_mul], zero_smul := by simp [smul_def''] } -- from now on, we don't want to use the following instance anymore attribute [instance, priority 0] algebra.to_has_scalar lemma smul_def (r : R) (x : A) : r • x = algebra_map A r * x := algebra.smul_def' r x theorem commutes (r : R) (x : A) : x * algebra_map A r = algebra_map A r * x := algebra.commutes' r x theorem left_comm (r : R) (x y : A) : x * (algebra_map A r * y) = algebra_map A r * (x * y) := by rw [← mul_assoc, commutes, mul_assoc] @[simp] lemma mul_smul_comm (s : R) (x y : A) : x * (s • y) = s • (x * y) := by rw [smul_def, smul_def, left_comm] @[simp] lemma smul_mul_assoc (r : R) (x y : A) : (r • x) * y = r • (x * y) := by rw [smul_def, smul_def, mul_assoc] /-- R[X] is the generator of the category R-Alg. -/ instance polynomial (R : Type u) [comm_ring R] : algebra R (polynomial R) := { to_fun := polynomial.C, commutes' := λ _ _, mul_comm _ _, smul_def' := λ c p, (polynomial.C_mul' c p).symm, .. polynomial.module } /-- The algebra of multivariate polynomials. -/ instance mv_polynomial (R : Type u) [comm_ring R] (ι : Type v) : algebra R (mv_polynomial ι R) := { to_fun := mv_polynomial.C, commutes' := λ _ _, mul_comm _ _, smul_def' := λ c p, (mv_polynomial.C_mul' c p).symm, .. mv_polynomial.module } /-- Creating an algebra from a subring. This is the dual of ring extension. -/ instance of_subring (S : set R) [is_subring S] : algebra S R := of_ring_hom subtype.val ⟨rfl, λ _ _, rfl, λ _ _, rfl⟩ variables (R A) /-- The multiplication in an algebra is a bilinear map. -/ def lmul : A →ₗ A →ₗ A := linear_map.mk₂ R (*) (λ x y z, add_mul x y z) (λ c x y, by rw [smul_def, smul_def, mul_assoc _ x y]) (λ x y z, mul_add x y z) (λ c x y, by rw [smul_def, smul_def, left_comm]) def lmul_left (r : A) : A →ₗ A := lmul R A r def lmul_right (r : A) : A →ₗ A := (lmul R A).flip r variables {R A} @[simp] lemma lmul_apply (p q : A) : lmul R A p q = p * q := rfl @[simp] lemma lmul_left_apply (p q : A) : lmul_left R A p q = p * q := rfl @[simp] lemma lmul_right_apply (p q : A) : lmul_right R A p q = q * p := rfl end algebra instance module.endomorphism_algebra (R : Type u) (M : Type v) [comm_ring R] [add_comm_group M] [module R M] : algebra R (M →ₗ[R] M) := { to_fun := (λ r, r • linear_map.id), hom := by apply is_ring_hom.mk; intros; ext; simp [mul_smul, add_smul], commutes' := by intros; ext; simp, smul_def' := by intros; ext; simp } set_option class.instance_max_depth 40 instance matrix_algebra (n : Type u) (R : Type v) [fintype n] [decidable_eq n] [comm_ring R] : algebra R (matrix n n R) := { to_fun := (λ r, r • 1), hom := { map_one := by { ext, simp, }, map_mul := by { intros, ext, simp [mul_assoc], }, map_add := by { intros, simp [add_smul], } }, commutes' := by { intros, simp }, smul_def' := by { intros, simp } } set_option old_structure_cmd true /-- Defining the homomorphism in the category R-Alg. -/ structure alg_hom (R : Type u) (A : Type v) (B : Type w) [comm_ring R] [ring A] [ring B] [algebra R A] [algebra R B] extends ring_hom A B := (commutes' : ∀ r : R, to_fun (algebra_map A r) = algebra_map B r) infixr ` →ₐ `:25 := alg_hom _ notation A ` →ₐ[`:25 R `] ` B := alg_hom R A B namespace alg_hom variables {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁} variables {rR : comm_ring R} {rA : ring A} {rB : ring B} {rC : ring C} {rD : ring D} variables {aA : algebra R A} {aB : algebra R B} {aC : algebra R C} {aD : algebra R D} include R rR rA rB aA aB instance : has_coe_to_fun (A →ₐ[R] B) := ⟨_, λ f, f.to_fun⟩ instance : has_coe (A →ₐ[R] B) (A →+* B) := ⟨alg_hom.to_ring_hom⟩ variables (φ : A →ₐ[R] B) instance : is_ring_hom ⇑φ := ring_hom.is_ring_hom φ.to_ring_hom @[ext] theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁ = φ₂ := by cases φ₁; cases φ₂; congr' 1; ext; apply H theorem commutes (r : R) : φ (algebra_map A r) = algebra_map B r := φ.commutes' r @[simp] lemma map_add (r s : A) : φ (r + s) = φ r + φ s := is_ring_hom.map_add _ @[simp] lemma map_zero : φ 0 = 0 := is_ring_hom.map_zero _ @[simp] lemma map_neg (x) : φ (-x) = -φ x := is_ring_hom.map_neg _ @[simp] lemma map_sub (x y) : φ (x - y) = φ x - φ y := is_ring_hom.map_sub _ @[simp] lemma map_mul (x y) : φ (x * y) = φ x * φ y := is_ring_hom.map_mul _ @[simp] lemma map_one : φ 1 = 1 := is_ring_hom.map_one _ /-- R-Alg ⥤ R-Mod -/ def to_linear_map : A →ₗ B := { to_fun := φ, add := φ.map_add, smul := λ (c : R) x, by rw [algebra.smul_def, φ.map_mul, φ.commutes c, algebra.smul_def] } @[simp] lemma to_linear_map_apply (p : A) : φ.to_linear_map p = φ p := rfl theorem to_linear_map_inj {φ₁ φ₂ : A →ₐ[R] B} (H : φ₁.to_linear_map = φ₂.to_linear_map) : φ₁ = φ₂ := ext $ λ x, show φ₁.to_linear_map x = φ₂.to_linear_map x, by rw H variables (R A) omit rB aB variables [rR] [rA] [aA] protected def id : A →ₐ[R] A := { commutes' := λ _, rfl, ..ring_hom.id A } variables {R A rR rA aA} @[simp] lemma id_to_linear_map : (alg_hom.id R A).to_linear_map = @linear_map.id R A _ _ _ := rfl @[simp] lemma id_apply (p : A) : alg_hom.id R A p = p := rfl include rB rC aB aC def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ[R] C := { commutes' := λ r : R, by rw [← φ₁.commutes, ← φ₂.commutes]; refl, .. φ₁.to_ring_hom.comp ↑φ₂ } @[simp] lemma comp_to_linear_map (f : A →ₐ[R] B) (g : B →ₐ[R] C) : (g.comp f).to_linear_map = g.to_linear_map.comp f.to_linear_map := rfl @[simp] lemma comp_apply (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) : φ₁.comp φ₂ p = φ₁ (φ₂ p) := rfl omit rC aC @[simp] theorem comp_id : φ.comp (alg_hom.id R A) = φ := ext $ λ x, rfl @[simp] theorem id_comp : (alg_hom.id R B).comp φ = φ := ext $ λ x, rfl include rC aC rD aD theorem comp_assoc (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) : (φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃) := ext $ λ x, rfl end alg_hom namespace algebra variables (R : Type u) (S : Type v) (A : Type w) include R S A /-- `comap R S A` is a type alias for `A`, and has an R-algebra structure defined on it when `algebra R S` and `algebra S A`. -/ /- This is done to avoid a type class search with meta-variables `algebra R ?m_1` and `algebra ?m_1 A -/ /- The `nolint` attribute is added because it has unused arguments `R` and `S`, but these are necessary for synthesizing the appropriate type classes -/ @[nolint] def comap : Type w := A def comap.to_comap : A → comap R S A := id def comap.of_comap : comap R S A → A := id omit R S A variables [comm_ring R] [comm_ring S] [ring A] [algebra R S] [algebra S A] instance comap.ring : ring (comap R S A) := _inst_3 instance comap.comm_ring (R : Type u) (S : Type v) (A : Type w) [comm_ring R] [comm_ring S] [comm_ring A] [algebra R S] [algebra S A] : comm_ring (comap R S A) := _inst_8 instance comap.module : module S (comap R S A) := show module S A, by apply_instance instance comap.has_scalar : has_scalar S (comap R S A) := show has_scalar S A, by apply_instance set_option class.instance_max_depth 40 /-- R ⟶ S induces S-Alg ⥤ R-Alg -/ instance comap.algebra : algebra R (comap R S A) := { smul := λ r x, (algebra_map S r • x : A), to_fun := (algebra_map A : S → A) ∘ algebra_map S, hom := by letI : is_ring_hom (algebra_map A) := _inst_5.hom; apply_instance, commutes' := λ r x, algebra.commutes _ _, smul_def' := λ _ _, algebra.smul_def _ _ } def to_comap : S →ₐ[R] comap R S A := { commutes' := λ r, rfl, ..ring_hom.of (algebra_map A : S → A) } theorem to_comap_apply (x) : to_comap R S A x = (algebra_map A : S → A) x := rfl end algebra namespace alg_hom variables {R : Type u} {S : Type v} {A : Type w} {B : Type u₁} variables [comm_ring R] [comm_ring S] [ring A] [ring B] variables [algebra R S] [algebra S A] [algebra S B] (φ : A →ₐ[S] B) include R /-- R ⟶ S induces S-Alg ⥤ R-Alg -/ def comap : algebra.comap R S A →ₐ[R] algebra.comap R S B := { commutes' := λ r, φ.commutes (algebra_map S r) ..φ } end alg_hom namespace polynomial variables (R : Type u) (A : Type v) variables [comm_ring R] [comm_ring A] [algebra R A] variables (x : A) /-- A → Hom[R-Alg](R[X],A) -/ def aeval : polynomial R →ₐ[R] A := { commutes' := λ r, eval₂_C _ _, ..ring_hom.of (eval₂ (algebra_map A) x) } theorem aeval_def (p : polynomial R) : aeval R A x p = eval₂ (algebra_map A) x p := rfl @[simp] lemma aeval_X : aeval R A x X = x := eval₂_X _ x @[simp] lemma aeval_C (r : R) : aeval R A x (C r) = algebra_map A r := eval₂_C _ x instance aeval.is_ring_hom : is_ring_hom (aeval R A x) := by apply_instance theorem eval_unique (φ : polynomial R →ₐ[R] A) (p) : φ p = eval₂ (algebra_map A) (φ X) p := begin apply polynomial.induction_on p, { intro r, rw eval₂_C, exact φ.commutes r }, { intros f g ih1 ih2, rw [is_ring_hom.map_add φ, ih1, ih2, eval₂_add] }, { intros n r ih, rw [pow_succ', ← mul_assoc, is_ring_hom.map_mul φ, eval₂_mul (algebra_map A : R → A), eval₂_X, ih] } end end polynomial namespace mv_polynomial variables (R : Type u) (A : Type v) variables [comm_ring R] [comm_ring A] [algebra R A] variables (σ : set A) /-- (ι → A) → Hom[R-Alg](R[ι],A) -/ def aeval : mv_polynomial σ R →ₐ[R] A := { commutes' := λ r, eval₂_C _ _ _ ..ring_hom.of (eval₂ (algebra_map A) subtype.val) } theorem aeval_def (p : mv_polynomial σ R) : aeval R A σ p = eval₂ (algebra_map A) subtype.val p := rfl @[simp] lemma aeval_X (s : σ) : aeval R A σ (X s) = s := eval₂_X _ _ _ @[simp] lemma aeval_C (r : R) : aeval R A σ (C r) = algebra_map A r := eval₂_C _ _ _ instance aeval.is_ring_hom : is_ring_hom (aeval R A σ) := by apply_instance variables (ι : Type w) theorem eval_unique (φ : mv_polynomial ι R →ₐ[R] A) (p) : φ p = eval₂ (algebra_map A) (φ ∘ X) p := begin apply mv_polynomial.induction_on p, { intro r, rw eval₂_C, exact φ.commutes r }, { intros f g ih1 ih2, rw [is_ring_hom.map_add φ, ih1, ih2, eval₂_add] }, { intros p j ih, rw [is_ring_hom.map_mul φ, eval₂_mul, eval₂_X, ih] } end end mv_polynomial namespace rat instance algebra_rat {α} [field α] [char_zero α] : algebra ℚ α := algebra.of_ring_hom rat.cast (by apply_instance) end rat namespace complex instance algebra_over_reals : algebra ℝ ℂ := algebra.of_ring_hom coe $ by constructor; intros; simp [one_re] instance : has_scalar ℝ ℂ := { smul := λ r c, ↑r * c} end complex structure subalgebra (R : Type u) (A : Type v) [comm_ring R] [ring A] [algebra R A] : Type v := (carrier : set A) [subring : is_subring carrier] (range_le' : set.range (algebra_map A : R → A) ≤ carrier) namespace subalgebra variables {R : Type u} {A : Type v} variables [comm_ring R] [ring A] [algebra R A] include R instance : has_coe (subalgebra R A) (set A) := ⟨λ S, S.carrier⟩ lemma range_le (S : subalgebra R A) : set.range (algebra_map A : R → A) ≤ S := S.range_le' instance : has_mem A (subalgebra R A) := ⟨λ x S, x ∈ (S : set A)⟩ variables {A} theorem mem_coe {x : A} {s : subalgebra R A} : x ∈ (s : set A) ↔ x ∈ s := iff.rfl @[ext] theorem ext {S T : subalgebra R A} (h : ∀ x : A, x ∈ S ↔ x ∈ T) : S = T := by cases S; cases T; congr; ext x; exact h x variables (S : subalgebra R A) instance : is_subring (S : set A) := S.subring instance : ring S := @@subtype.ring _ S.is_subring instance : inhabited S := ⟨0⟩ instance (R : Type u) (A : Type v) {rR : comm_ring R} [comm_ring A] {aA : algebra R A} (S : subalgebra R A) : comm_ring S := @@subtype.comm_ring _ S.is_subring instance algebra : algebra R S := { smul := λ (c:R) x, ⟨c • x.1, by rw algebra.smul_def; exact @@is_submonoid.mul_mem _ S.2.2 (S.3 ⟨c, rfl⟩) x.2⟩, to_fun := λ r, ⟨algebra_map A r, S.range_le ⟨r, rfl⟩⟩, hom := ⟨subtype.eq $ algebra.map_one R A, λ x y, subtype.eq $ algebra.map_mul A x y, λ x y, subtype.eq $ algebra.map_add A x y⟩, commutes' := λ c x, subtype.eq $ by apply _inst_3.4, smul_def' := λ c x, subtype.eq $ by apply _inst_3.5 } instance to_algebra (R : Type u) (A : Type v) [comm_ring R] [comm_ring A] [algebra R A] (S : subalgebra R A) : algebra S A := algebra.of_subring _ def val : S →ₐ[R] A := by refine_struct { to_fun := subtype.val }; intros; refl def to_submodule : submodule R A := { carrier := S, zero := (0:S).2, add := λ x y hx hy, (⟨x, hx⟩ + ⟨y, hy⟩ : S).2, smul := λ c x hx, (algebra.smul_def c x).symm ▸ (⟨algebra_map A c, S.range_le ⟨c, rfl⟩⟩ * ⟨x, hx⟩:S).2 } instance coe_to_submodule : has_coe (subalgebra R A) (submodule R A) := ⟨to_submodule⟩ instance to_submodule.is_subring : is_subring ((S : submodule R A) : set A) := S.2 instance : partial_order (subalgebra R A) := { le := λ S T, (S : set A) ≤ (T : set A), le_refl := λ _, le_refl _, le_trans := λ _ _ _, le_trans, le_antisymm := λ S T hst hts, ext $ λ x, ⟨@hst x, @hts x⟩ } def comap {R : Type u} {S : Type v} {A : Type w} [comm_ring R] [comm_ring S] [ring A] [algebra R S] [algebra S A] (iSB : subalgebra S A) : subalgebra R (algebra.comap R S A) := { carrier := (iSB : set A), subring := iSB.is_subring, range_le' := λ a ⟨r, hr⟩, hr ▸ iSB.range_le ⟨_, rfl⟩ } def under {R : Type u} {A : Type v} [comm_ring R] [comm_ring A] {i : algebra R A} (S : subalgebra R A) (T : subalgebra S A) : subalgebra R A := { carrier := T, range_le' := (λ a ⟨r, hr⟩, hr ▸ T.range_le ⟨⟨algebra_map A r, S.range_le ⟨r, rfl⟩⟩, rfl⟩) } end subalgebra namespace alg_hom variables {R : Type u} {A : Type v} {B : Type w} variables [comm_ring R] [ring A] [ring B] [algebra R A] [algebra R B] variables (φ : A →ₐ[R] B) protected def range : subalgebra R B := { carrier := set.range φ, subring := { one_mem := ⟨1, φ.map_one⟩, mul_mem := λ y₁ y₂ ⟨x₁, hx₁⟩ ⟨x₂, hx₂⟩, ⟨x₁ * x₂, hx₁ ▸ hx₂ ▸ φ.map_mul x₁ x₂⟩ }, range_le' := λ y ⟨r, hr⟩, ⟨algebra_map A r, hr ▸ φ.commutes r⟩ } end alg_hom namespace algebra variables {R : Type u} (A : Type v) variables [comm_ring R] [ring A] [algebra R A] include R variables (R) instance id : algebra R R := algebra.of_ring_hom id $ by apply_instance namespace id @[simp] lemma map_eq_self (x : R) : algebra_map R x = x := rfl @[simp] lemma smul_eq_mul (x y : R) : x • y = x * y := rfl end id def of_id : R →ₐ A := { commutes' := λ _, rfl, .. ring_hom.of (algebra_map A) } variables {R} theorem of_id_apply (r) : of_id R A r = algebra_map A r := rfl variables (R) {A} def adjoin (s : set A) : subalgebra R A := { carrier := ring.closure (set.range (algebra_map A : R → A) ∪ s), range_le' := le_trans (set.subset_union_left _ _) ring.subset_closure } variables {R} protected lemma gc : galois_connection (adjoin R : set A → subalgebra R A) coe := λ s S, ⟨λ H, le_trans (le_trans (set.subset_union_right _ _) ring.subset_closure) H, λ H, ring.closure_subset $ set.union_subset S.range_le H⟩ protected def gi : galois_insertion (adjoin R : set A → subalgebra R A) coe := { choice := λ s hs, adjoin R s, gc := algebra.gc, le_l_u := λ S, (algebra.gc (S : set A) (adjoin R S)).1 $ le_refl _, choice_eq := λ _ _, rfl } instance : complete_lattice (subalgebra R A) := galois_insertion.lift_complete_lattice algebra.gi instance : inhabited (subalgebra R A) := ⟨⊥⟩ theorem mem_bot {x : A} : x ∈ (⊥ : subalgebra R A) ↔ x ∈ set.range (algebra_map A : R → A) := suffices (⊥ : subalgebra R A) = (of_id R A).range, by rw this; refl, le_antisymm bot_le $ subalgebra.range_le _ theorem mem_top {x : A} : x ∈ (⊤ : subalgebra R A) := ring.mem_closure $ or.inr trivial def to_top : A →ₐ[R] (⊤ : subalgebra R A) := by refine_struct { to_fun := λ x, (⟨x, mem_top⟩ : (⊤ : subalgebra R A)) }; intros; refl end algebra section int variables (R : Type*) [comm_ring R] /-- CRing ⥤ ℤ-Alg -/ def alg_hom_int {R : Type u} [comm_ring R] [algebra ℤ R] {S : Type v} [comm_ring S] [algebra ℤ S] (f : R → S) [is_ring_hom f] : R →ₐ[ℤ] S := { commutes' := λ i, by change (ring_hom.of f).to_fun with f; exact int.induction_on i (by rw [algebra.map_zero, algebra.map_zero, is_ring_hom.map_zero f]) (λ i ih, by rw [algebra.map_add, algebra.map_add, algebra.map_one, algebra.map_one]; rw [is_ring_hom.map_add f, is_ring_hom.map_one f, ih]) (λ i ih, by rw [algebra.map_sub, algebra.map_sub, algebra.map_one, algebra.map_one]; rw [is_ring_hom.map_sub f, is_ring_hom.map_one f, ih]), ..ring_hom.of f } /-- CRing ⥤ ℤ-Alg -/ instance algebra_int : algebra ℤ R := { to_fun := coe, commutes' := λ _ _, mul_comm _ _, smul_def' := λ _ _, gsmul_eq_mul _ _ } variables {R} /-- CRing ⥤ ℤ-Alg -/ def subalgebra_of_subring (S : set R) [is_subring S] : subalgebra ℤ R := { carrier := S, range_le' := λ x ⟨i, h⟩, h ▸ int.induction_on i (by rw algebra.map_zero; exact is_add_submonoid.zero_mem _) (λ i hi, by rw [algebra.map_add, algebra.map_one]; exact is_add_submonoid.add_mem hi (is_submonoid.one_mem _)) (λ i hi, by rw [algebra.map_sub, algebra.map_one]; exact is_add_subgroup.sub_mem _ _ _ hi (is_submonoid.one_mem _)) } @[simp] lemma mem_subalgebra_of_subring {x : R} {S : set R} [is_subring S] : x ∈ subalgebra_of_subring S ↔ x ∈ S := iff.rfl section span_int open submodule lemma span_int_eq_add_group_closure (s : set R) : ↑(span ℤ s) = add_group.closure s := set.subset.antisymm (λ x hx, span_induction hx (λ _, add_group.mem_closure) (is_add_submonoid.zero_mem _) (λ a b ha hb, is_add_submonoid.add_mem ha hb) (λ n a ha, by { exact is_add_subgroup.gsmul_mem ha })) (add_group.closure_subset subset_span) @[simp] lemma span_int_eq (s : set R) [is_add_subgroup s] : (↑(span ℤ s) : set R) = s := by rw [span_int_eq_add_group_closure, add_group.closure_add_subgroup] end span_int end int section restrict_scalars /- In this section, we describe restriction of scalars: if `S` is an algebra over `R`, then `S`-modules are also `R`-modules. -/ variables (R : Type*) [comm_ring R] (S : Type*) [comm_ring S] [algebra R S] (E : Type*) [add_comm_group E] [module S E] {F : Type*} [add_comm_group F] [module S F] /-- When `E` is a module over a ring `S`, and `S` is an algebra over `R`, then `E` inherits a module structure over `R`, called `module.restrict S R E`. Not registered as an instance as `S` can not be inferred. -/ def module.restrict_scalars : module R E := { smul := λc x, (algebra_map S c) • x, one_smul := by simp, mul_smul := by simp [mul_smul], smul_add := by simp [smul_add], smul_zero := by simp [smul_zero], add_smul := by simp [add_smul], zero_smul := by simp [zero_smul] } variables {S E} local attribute [instance] module.restrict_scalars /-- The `R`-linear map induced by an `S`-linear map when `S` is an algebra over `R`. -/ def linear_map.restrict_scalars (f : E →ₗ[S] F) : E →ₗ[R] F := { to_fun := f.to_fun, add := λx y, f.map_add x y, smul := λc x, f.map_smul (algebra_map S c) x } @[simp, squash_cast] lemma linear_map.coe_restrict_scalars_eq_coe (f : E →ₗ[S] F) : (f.restrict_scalars R : E → F) = f := rfl /- Register as an instance (with low priority) the fact that a complex vector space is also a real vector space. -/ instance module.complex_to_real (E : Type*) [add_comm_group E] [module ℂ E] : module ℝ E := module.restrict_scalars ℝ ℂ E attribute [instance, priority 900] module.complex_to_real end restrict_scalars