CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
-/
import algebra.associated algebra.euclidean_domain ring_theory.ideals
noncomputable theory
open_locale classical
open euclidean_domain set ideal

theorem span_gcd {α} [euclidean_domain α] (x y : α) :
  span ({gcd x y} : set α) = span ({x, y} : set α) :=
begin
  apply le_antisymm; refine span_le.1 _,
  { simp [submodule.span_span, mem_span_pair, submodule.le_def', mem_span_singleton'],
    assume a b ha,
    exact ⟨b * gcd_a x y, b * gcd_b x y, by rw [← ha, gcd_eq_gcd_ab x y];
      simp [mul_add, mul_comm, mul_left_comm]⟩ },
  { assume z ,
    simp [mem_span_singleton, euclidean_domain.gcd_dvd_left, mem_span_pair,
      @eq_comm _ _ z] {contextual := tt},
    assume a b h,
    exact dvd_add (dvd_mul_of_dvd_right (gcd_dvd_left _ _) _)
      (dvd_mul_of_dvd_right (gcd_dvd_right _ _) _) }
end

theorem gcd_is_unit_iff {α} [euclidean_domain α] {x y : α} :
  is_unit (gcd x y) ↔ is_coprime x y :=
by rw [← span_singleton_eq_top, span_gcd, is_coprime]

theorem is_coprime_of_dvd {α} [euclidean_domain α] {x y : α}
  (z : ¬ (x = 0 ∧ y = 0)) (H : ∀ z ∈ nonunits α, z ≠ 0 → z ∣ x → ¬ z ∣ y) :
  is_coprime x y :=
begin
  rw [← gcd_is_unit_iff],
  by_contra h,
  refine H _ h _ (gcd_dvd_left _ _) (gcd_dvd_right _ _),
  rwa [ne, euclidean_domain.gcd_eq_zero_iff]
end

theorem dvd_or_coprime {α} [euclidean_domain α] (x y : α)
  (h : irreducible x) : x ∣ y ∨ is_coprime x y :=
begin
  refine or_iff_not_imp_left.2 (λ h', _),
  unfreezeI, apply is_coprime_of_dvd,
  { rintro ⟨rfl, rfl⟩, simpa using h },
  { rintro z nu nz ⟨w, rfl⟩ dy,
    refine h' (dvd.trans _ dy),
    simpa using mul_dvd_mul_left z (is_unit_iff_dvd_one.1 $
      (of_irreducible_mul h).resolve_left nu) }
end