Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 21825License: APACHE
oleanfile 3.4.2, commit cbd2b6686ddb �R�� init logic basic tactic core � #�export_decl option none none some some export_decl bool ff ff tt tt export_decl has_andthen andthen andthen export_decl has_pow pow pow export_decl has_append append append export_decl decidable is_true is_true is_false is_false to_bool to_bool export_decl has_pure pure pure export_decl has_bind bind bind export_decl has_monad_lift_t monad_lift !monad_lift export_decl monad_functor_t monad_map $monad_map export_decl monad_run run 'run export_decl list mmap *mmap mmap' *mmap' mfilter *mfilter mfoldl *mfoldl export_decl native nat_map 3rb_map mk export_decl name_map native rb_map mk export_decl expr_map native rb_map mk export_decl tactic interaction_monad failed fail export_decl tactic_result interaction_monad result export_decl tactic Ftransparency reducible Greducible semireducible Gsemireducible export_decl tactic mk_simp_attr Lmk_simp_attr export_decl monad_except throw Othrow catch Ocatch export_decl monad_except_adapter adapt_except Tadapt_except export_decl monad_state_adapter adapt_state Wadapt_state export_decl monad_reader read Zread export_decl monad_reader_adapter adapt_reader ]adapt_reader export_decl is_lawful_functor map_const_eq `map_const_eq id_map `id_map comp_map `comp_map export_decl is_lawful_applicative seq_left_eq gseq_left_eq seq_right_eq gseq_right_eq pure_seq_eq_map gpure_seq_eq_map map_pure gmap_pure seq_pure gseq_pure seq_assoc gseq_assoc export_decl is_lawful_monad bind_pure_comp_eq_map tbind_pure_comp_eq_map bind_map_eq_seq tbind_map_eq_seq pure_bind tpure_bind bind_assoc tbind_assoc decl_trace auto done decl_trace auto finish decl tactic assert_fresh t expr bool tt tactic � id_rhs monad to_has_bind interaction_monad monad tactic_state name �get_unused_name name mk_string Str h name anonymous nat n �assert � PInfo �2 VMR �VMC �2 s � name anonymous hchar of_nat string empty string str name mk_string tactic get_unused_name Fassert decl �assertv_fresh t v � � h �assertv ! # � PInfo �7 VMR �VMC �7 � � � �h � � � � � Fassertv decl �interactive revert_all 5tactic revert_all � PInfo �= VMR � VMC � = Frevert_all nspace auto decl �whnf_reducible e � Fwhnf ! I � PInfo �I VMR �VMC �I � tactic whnf decl �add_simps _main a simp_lemmas � list A � A � Clist cases_on � C D ! Dreturn A #a_hd a_tl C L A A �add_simp #s' A FRecFn � ! # � PInfo �L VMR �VMC �L a � C � Alist cases_on simp_lemmas add_simp �decl �add_simps F � � PInfo �L VMR � VMC � L � PInfo �auto_config T ind l C n � �e_1 use_simp bool classical jmax_ematch_rounds W �mk - # ! � g - ! � � � j � j � g � i � r � j � j � W - # !� nspace �prt �rec decl �sizeof x g �rec x g � j � j � has_add add nat has_add � �has_one one nat has_one sizeof jbool has_sizeof - � # � nat has_sizeof ! � PInfo �T ATTR reducibility � � � prt �decl �has_sizeof_inst has_sizeof ghas_sizeof mk g � � PInfo �T ATTR instance � � � class � �� �prt �decl �sizeof_spec � j � j � eq � n � � j � j � eq refl � � PInfo �T ATTR _refl_lemma � � � EqnL �prt �gind � � decl �use_simp c g j � g !Proj � � � j � � g j � j � j � - !� PInfo �T ATTR �� � � proj � � decl �classical � � g !Proj � � � j � � j � j � # !� PInfo �T ATTR �� � � proj � � decl �max_ematch_rounds � g � g !Proj � � � � � g � j � j � ! !� PInfo �T ATTR �� � � proj � � decl �use_simp _default jid j � PInfo �T decl �equations _eqn_1 � j � � � j �� PInfo �T ATTR �� � � EqnL �SEqnL �ATTR �� � � decl �classical _default j �� PInfo �T decl �equations _eqn_1 � � � � �� PInfo �T ATTR �� � � EqnL �SEqnL �ATTR �� � � decl �max_ematch_rounds _default � bit0 � �bit1 � � � �� PInfo �T decl �equations _eqn_1 � � � � �� PInfo � T ATTR �� � � EqnL � SEqnL �ATTR �� � � decl �rec_on � � i � g � � j � j � n - # � i � g � � �rec � - ! #� PInfo � T ATTR �� � � auxrec � prt � auxrec �rec_on decl �cases_on � � � �� PInfo � T ATTR �� � � auxrec � decl �no_confusion_type �P hv1 gv2 g h � h � g � g � � � g h # � j � j � � W � j � j � � use_simp_eq � -classical_eq � max_ematch_rounds_eq � � - � PInfo � T ATTR �� � � prt � decl �no_confusion � � h � g � gh12 � g # ! � � W - # � h � g � g � � eq rec g -a gh1a � W ! � ! � � #h11 � - - � � g � . ! ! W � j � j � � � � - - � � = � � - - ! � W � - � # # ! !� PInfo � T ATTR �� � � no_conf � prt � decl �inj � j � j � � j � j � � � k � � W nand � W � ] � � � # � j � j � � j � j � � � \ �no_confusion � f k � ^ � � k W - # ! � � ` � � ` � � � ^ Wand intro � � � ^ � ] � � � � - � { � � � � # ! � PInfo � T decl �inj_arrow l � j � j � � j � j � � � \P h � � � � � � � � � � � � W # � j � j � � j � j � � � \ � h � � � !and elim_left � � � ] � � � z �inj � � � � ^ � � W - � � � � � zand elim_right � � � � � � � � � � � z � � � PInfo � T decl �inj_eq � j � j � � j � j � � � \ � b � ] � � # � W ! � j � j � use_simp_1 jclassical_1 jmax_ematch_rounds_1 propext � \ � �iff intro � \ � �h � \ � � � ^ � � W - # !a � �and dcases_on � ` � e � ) � f � k � � � ^ � k � W - !a_left � `a_right � a � � � � � � z � - � � � k � � � � � r !a_right_left � �a_right_right � � � j � je_1 � # ! � j � je_2 � � � e_3 � # !congr g k � � � � � - # � j x � � � � �congr_arg j y � � � k � ^ W ! � @ � � W � � ^ # � � ! � PInfo � !T ATTR derive � � � list cons pexpr Quote decidable_eq list nil � Edecl �decidable_eq decidable_eq g � � N_v g � � >