Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import tactic.fin_cases import data.nat.prime import group_theory.perm.sign import tactic.norm_num example (f : ℕ → Prop) (p : fin 3) (h0 : f 0) (h1 : f 1) (h2 : f 2) : f p.val := begin fin_cases *, simp, assumption, simp, assumption, simp, assumption, end example (x2 : fin 2) (x3 : fin 3) (n : nat) (y : fin n) : x2.val * x3.val = x3.val * x2.val := begin fin_cases x2; fin_cases x3, success_if_fail { fin_cases * }, success_if_fail { fin_cases y }, all_goals { simp }, end open finset example (x : ℕ) (h : x ∈ Ico 2 5) : x = 2 ∨ x = 3 ∨ x = 4 := begin fin_cases h, all_goals { simp } end open nat example (x : ℕ) (h : x ∈ [2,3,5,7]) : x = 2 ∨ x = 3 ∨ x = 5 ∨ x = 7 := begin fin_cases h, all_goals { simp } end example (x : ℕ) (h : x ∈ [2,3,5,7]) : true := begin success_if_fail { fin_cases h with [3,3,5,7] }, trivial end example (x : list ℕ) (h : x ∈ [[1],[2]]) : x.length = 1 := begin fin_cases h with [[1],[1+1]], simp, guard_target (list.length [1 + 1] = 1), simp end -- testing that `with` arguments are elaborated with respect to the expected type: example (x : ℤ) (h : x ∈ ([2,3] : list ℤ)) : x = 2 ∨ x = 3:= begin fin_cases h with [2,3], all_goals { simp } end instance (n : ℕ) : decidable (prime n) := decidable_prime_1 n example (x : ℕ) (h : x ∈ (range 10).filter prime) : x = 2 ∨ x = 3 ∨ x = 5 ∨ x = 7 := begin fin_cases h; exact dec_trivial end open equiv.perm example (x : (Σ (a : fin 4), fin 4)) (h : x ∈ fin_pairs_lt 4) : x.1.val < 4 := begin fin_cases h; simp, any_goals { exact dec_trivial }, end example (x : fin 3) : x.val < 5 := begin fin_cases x; exact dec_trivial end example (f : ℕ → Prop) (p : fin 3) (h0 : f 0) (h1 : f 1) (h2 : f 2) : f p.val := begin fin_cases *, all_goals { assumption } end