Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import tactic.fin_cases
import data.nat.prime
import group_theory.perm.sign
import tactic.norm_num
example (f : ℕ → Prop) (p : fin 3) (h0 : f 0) (h1 : f 1) (h2 : f 2) : f p.val :=
begin
fin_cases *,
simp, assumption,
simp, assumption,
simp, assumption,
end
example (x2 : fin 2) (x3 : fin 3) (n : nat) (y : fin n) : x2.val * x3.val = x3.val * x2.val :=
begin
fin_cases x2;
fin_cases x3,
success_if_fail { fin_cases * },
success_if_fail { fin_cases y },
all_goals { simp },
end
open finset
example (x : ℕ) (h : x ∈ Ico 2 5) : x = 2 ∨ x = 3 ∨ x = 4 :=
begin
fin_cases h,
all_goals { simp }
end
open nat
example (x : ℕ) (h : x ∈ [2,3,5,7]) : x = 2 ∨ x = 3 ∨ x = 5 ∨ x = 7 :=
begin
fin_cases h,
all_goals { simp }
end
example (x : ℕ) (h : x ∈ [2,3,5,7]) : true :=
begin
success_if_fail { fin_cases h with [3,3,5,7] },
trivial
end
example (x : list ℕ) (h : x ∈ [[1],[2]]) : x.length = 1 :=
begin
fin_cases h with [[1],[1+1]],
simp,
guard_target (list.length [1 + 1] = 1),
simp
end
-- testing that `with` arguments are elaborated with respect to the expected type:
example (x : ℤ) (h : x ∈ ([2,3] : list ℤ)) : x = 2 ∨ x = 3:=
begin
fin_cases h with [2,3],
all_goals { simp }
end
instance (n : ℕ) : decidable (prime n) := decidable_prime_1 n
example (x : ℕ) (h : x ∈ (range 10).filter prime) : x = 2 ∨ x = 3 ∨ x = 5 ∨ x = 7 :=
begin
fin_cases h; exact dec_trivial
end
open equiv.perm
example (x : (Σ (a : fin 4), fin 4)) (h : x ∈ fin_pairs_lt 4) : x.1.val < 4 :=
begin
fin_cases h; simp,
any_goals { exact dec_trivial },
end
example (x : fin 3) : x.val < 5 :=
begin
fin_cases x; exact dec_trivial
end
example (f : ℕ → Prop) (p : fin 3) (h0 : f 0) (h1 : f 1) (h2 : f 2) : f p.val :=
begin
fin_cases *,
all_goals { assumption }
end