Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.mllist
@[reducible] def S (α : Type) := state_t (list nat) option α
def append (x : nat) : S unit :=
{ run := λ s, some ((), x :: s) }
def F : nat → S nat
| 0 := failure
| (n+1) := append (n+1) >> pure n
open tactic
run_cmd
(do let x := ((mllist.fix F 10).force).run [],
guard $ x = (some ([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])))
run_cmd
(do let x := (((mllist.fix F 10).map(λ n, n*n)).take 2).run [],
guard $ x = (some ([100, 81], [9, 10])))
run_cmd
(do let x := (((mllist.fix F 10).mmap(λ n, pure $ n*n)).take 3).run [],
guard $ x = (some ([100, 81, 64], [8, 9, 10])))
meta def l1 : mllist S nat := mllist.of_list [0,1,2]
meta def l2 : mllist S nat := mllist.of_list [3,4,5]
meta def ll : mllist S nat := (mllist.of_list [l1, l2]).join
run_cmd
(do let x := ll.force.run [],
guard $ x = (some ([0, 1, 2, 3, 4, 5], [])))
meta def half_or_fail (n : ℕ) : tactic ℕ :=
do guard (n % 2 = 0),
pure (n / 2)
run_cmd
(do let x : mllist tactic ℕ := mllist.range,
let y := x.mfilter_map half_or_fail,
z ← y.take 10,
guard $ z.length = 10)
run_cmd
(do let R : mllist tactic ℕ := mllist.range,
let S := R.mfilter_map (λ n, do guard $ n = 5, return n),
n ← R.head,
guard $ n = 0)
run_cmd
(do let R : mllist tactic ℕ := mllist.range,
n ← R.mfirst (λ n, do guard $ n = 5, return n),
guard $ n = 5)