CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.mllist

@[reducible] def S (α : Type) := state_t (list nat) option α
def append (x : nat) : S unit :=
{ run := λ s, some ((), x :: s) }

def F : nat → S nat
| 0 := failure
| (n+1) := append (n+1) >> pure n

open tactic

run_cmd
(do let x := ((mllist.fix F 10).force).run [],
    guard $ x = (some ([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])))
run_cmd
(do let x := (((mllist.fix F 10).map(λ n, n*n)).take 2).run [],
    guard $ x = (some ([100, 81], [9, 10])))
run_cmd
(do let x := (((mllist.fix F 10).mmap(λ n, pure $ n*n)).take 3).run [],
    guard $ x = (some ([100, 81, 64], [8, 9, 10])))

meta def l1 : mllist S nat := mllist.of_list [0,1,2]
meta def l2 : mllist S nat := mllist.of_list [3,4,5]
meta def ll : mllist S nat := (mllist.of_list [l1, l2]).join

run_cmd
(do let x := ll.force.run [],
    guard $ x = (some ([0, 1, 2, 3, 4, 5], [])))

meta def half_or_fail (n : ℕ) : tactic ℕ :=
do guard (n % 2 = 0),
   pure (n / 2)

run_cmd
(do let x : mllist tactic ℕ := mllist.range,
    let y := x.mfilter_map half_or_fail,
    z ← y.take 10,
    guard $ z.length = 10)

run_cmd
(do let R : mllist tactic ℕ := mllist.range,
    let S := R.mfilter_map (λ n, do guard $ n = 5, return n),
    n ← R.head,
    guard $ n = 0)

run_cmd
(do let R : mllist tactic ℕ := mllist.range,
    n ← R.mfirst (λ n, do guard $ n = 5, return n),
    guard $ n = 5)