Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.rewrite open tactic example : ∀ x y z a b c : ℕ, true := begin intros, have : x + (y + z) = 3 + y, admit, have : a + (b + x) + y + (z + b + c) ≤ 0, (do this ← get_local `this, tgt ← to_expr ```(a + (b + x) + y + (z + b + c)), assoc ← mk_mapp ``add_monoid.add_assoc [`(ℕ),none], (l,p) ← assoc_rewrite_intl assoc this tgt, note `h none p ), erw h, guard_target a + b + 3 + y + b + c ≤ 0, admit, trivial end example : ∀ x y z a b c : ℕ, true := begin intros, have : ∀ y, x + (y + z) = 3 + y, admit, have : a + (b + x) + y + (z + b + c) ≤ 0, (do this ← get_local `this, tgt ← to_expr ```(a + (b + x) + y + (z + b + c)), assoc_rewrite_target this ), guard_target a + b + 3 + y + b + c ≤ 0, admit, trivial end variables x y z a b c : ℕ variables h₀ : ∀ (y : ℕ), x + (y + z) = 3 + y variables h₁ : a + (b + x) + y + (z + b + a) ≤ 0 variables h₂ : y + b + c = y + b + a include h₀ h₁ h₂ example : a + (b + x) + y + (z + b + c) ≤ 0 := by { assoc_rw [h₀,h₂] at *, guard_hyp _inst := is_associative ℕ has_add.add, -- keep a local instance of is_associative to cache -- type class queries exact h₁ }