CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import tactic.tauto

section tauto₀
variables p q r : Prop
variables h : p ∧ q ∨ p ∧ r
include h
example : p ∧ p :=
by tauto

end tauto₀

section tauto₁
variables α : Type
variables p q r : α → Prop
variables h : (∃ x, p x ∧ q x) ∨ (∃ x, p x ∧ r x)
include h
example : ∃ x, p x :=
by tauto

end tauto₁

section tauto₂
variables α : Type
variables x : α
variables p q r : α → Prop
variables h₀ : (∀ x, p x → q x → r x) ∨ r x
variables h₁ : p x
variables h₂ : q x

include h₀ h₁ h₂
example : ∃ x, r x :=
by tauto

end tauto₂

section tauto₃


example (p : Prop) : p ∧ true ↔ p := by tauto
example (p : Prop) : p ∨ false ↔ p := by tauto
example (p q r : Prop) [decidable p] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto
example (p q r : Prop) [decidable q] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ p) : q := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : p) : ¬ q := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : q) : ¬ p := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) : p := by tauto
example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) (h'' : ¬ p) : false := by tauto
example (p q r : Prop) [decidable q] [decidable p] (h : p ↔ q) (h' : r ↔ q) (h'' : ¬ r) : ¬ p := by tauto
example (p q r : Prop) (h : p ↔ q) (h' : r ↔ q) : p ↔ r :=
by tauto!

example (p q r : Prop) (h : ¬ p = q) (h' : r = q) : p ↔ ¬ r := by tauto!

example (p : Prop) : p → ¬ (p → ¬ p) := by tauto

example (p : Prop) (em : p ∨ ¬ p) : ¬ (p ↔ ¬ p) := by tauto

example (P : ℕ → Prop) (n : ℕ) : P n → n = 7 ∨ n = 0 ∨ ¬ (n = 7 ∨ n = 0) ∧ P n :=
by tauto

section modulo_symmetry
variables {p q r : Prop} {α : Type} {x y : α}
variables (h : x = y)
variables (h'' : (p ∧ q ↔ q ∨ r) ↔ (r ∧ p ↔ r ∨ q))
include h
include h''
example (h' : ¬ y = x) : p ∧ q := by tauto
example (h' : p ∧ ¬ y = x) : p ∧ q := by tauto
example : y = x := by tauto
example (h' : ¬ x = y) : p ∧ q := by tauto
example : x = y := by tauto

end modulo_symmetry

end tauto₃