Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.tauto section tauto₀ variables p q r : Prop variables h : p ∧ q ∨ p ∧ r include h example : p ∧ p := by tauto end tauto₀ section tauto₁ variables α : Type variables p q r : α → Prop variables h : (∃ x, p x ∧ q x) ∨ (∃ x, p x ∧ r x) include h example : ∃ x, p x := by tauto end tauto₁ section tauto₂ variables α : Type variables x : α variables p q r : α → Prop variables h₀ : (∀ x, p x → q x → r x) ∨ r x variables h₁ : p x variables h₂ : q x include h₀ h₁ h₂ example : ∃ x, r x := by tauto end tauto₂ section tauto₃ example (p : Prop) : p ∧ true ↔ p := by tauto example (p : Prop) : p ∨ false ↔ p := by tauto example (p q r : Prop) [decidable p] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto example (p q r : Prop) [decidable q] [decidable r] : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (r ∨ p ∨ r) := by tauto example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ p) : q := by tauto example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : p) : ¬ q := by tauto example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : q) : ¬ p := by tauto example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) : p := by tauto example (p q : Prop) [decidable q] [decidable p] (h : ¬ (p ↔ q)) (h' : ¬ q) (h'' : ¬ p) : false := by tauto example (p q r : Prop) [decidable q] [decidable p] (h : p ↔ q) (h' : r ↔ q) (h'' : ¬ r) : ¬ p := by tauto example (p q r : Prop) (h : p ↔ q) (h' : r ↔ q) : p ↔ r := by tauto! example (p q r : Prop) (h : ¬ p = q) (h' : r = q) : p ↔ ¬ r := by tauto! example (p : Prop) : p → ¬ (p → ¬ p) := by tauto example (p : Prop) (em : p ∨ ¬ p) : ¬ (p ↔ ¬ p) := by tauto example (P : ℕ → Prop) (n : ℕ) : P n → n = 7 ∨ n = 0 ∨ ¬ (n = 7 ∨ n = 0) ∧ P n := by tauto section modulo_symmetry variables {p q r : Prop} {α : Type} {x y : α} variables (h : x = y) variables (h'' : (p ∧ q ↔ q ∨ r) ↔ (r ∧ p ↔ r ∨ q)) include h include h'' example (h' : ¬ y = x) : p ∧ q := by tauto example (h' : p ∧ ¬ y = x) : p ∧ q := by tauto example : y = x := by tauto example (h' : ¬ x = y) : p ∧ q := by tauto example : x = y := by tauto end modulo_symmetry end tauto₃