CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / pkg / Convex / doc / chap4.txt
Views: 418346
1
2
4 Fan
3
4
5
4.1 Fan: Category and Representations
6
7
4.1-1 IsFan
8
9
IsFan( M )  Category
10
Returns: true or false
11
12
The GAP category of a fan. Every fan is a convex object.
13
14
Remember: Every fan is a convex object.
15
16
17
4.2 Fan: Properties
18
19
4.2-1 IsComplete
20
21
IsComplete( fan )  property
22
Returns: true or false
23
24
Checks if the fan fan is complete, i. e. if it's support is the whole space.
25
26
4.2-2 IsPointed
27
28
IsPointed( fan )  property
29
Returns: true or false
30
31
Checks if the fan fan is pointed, which means that every cone it contains is
32
strictly convex.
33
34
4.2-3 IsSmooth
35
36
IsSmooth( fan )  property
37
Returns: true or false
38
39
Checks if the fan fan is smooth, i. e. if every cone in the fan is smooth.
40
41
4.2-4 IsRegularFan
42
43
IsRegularFan( fan )  property
44
Returns: true or false
45
46
Checks if the fan fan is regular, i. e. if it is the normal fan of a
47
polytope.
48
49
4.2-5 IsSimplicial
50
51
IsSimplicial( fan )  property
52
Returns: true or false
53
54
Checks if the fan fan is simplicial, i. e. if every cone in the fan is
55
simplicial.
56
57
4.2-6 HasConvexSupport
58
59
HasConvexSupport( fan )  property
60
Returns: true or false
61
62
Checks if the fan fan is simplicial, i. e. if every cone in the fan is
63
simplicial.
64
65
66
4.3 Fan: Attributes
67
68
4.3-1 Rays
69
70
Rays( fan )  attribute
71
Returns: a list
72
73
Returns the rays of the fan fan as a list of cones.
74
75
4.3-2 RayGenerators
76
77
RayGenerators( fan )  attribute
78
Returns: a list
79
80
Returns the generators rays of the fan fan as a list of of list of integers.
81
82
4.3-3 RaysInMaximalCones
83
84
RaysInMaximalCones( fan )  attribute
85
Returns: a list
86
87
Returns a list of lists, which represent an incidence matrix for the
88
correspondence of the rays and the maximal cones of the fan fan. The ith
89
list in the result represents the ith maximal cone of fan. In such a list,
90
the jth entry is 1 if the jth ray is in the cone, 0 otherwise.
91
92
4.3-4 MaximalCones
93
94
MaximalCones( fan )  attribute
95
Returns: a list
96
97
Returns the maximal cones of the fan fan as a list of cones.
98
99
100
4.4 Fan: Methods
101
102
4.4-1 *
103
104
*( fan1, fan2 )  operation
105
Returns: a fan
106
107
Returns the product of the fans fan1 and fan2.
108
109
110
4.5 Fan: Constructors
111
112
4.5-1 Fan
113
114
Fan( fan )  operation
115
Returns: a fan
116
117
Copy constructor for fans. For completeness reasons.
118
119
4.5-2 Fan
120
121
Fan( rays, cones )  operation
122
Returns: a fan
123
124
Constructs the fan out of the given rays and a list of cones given by a
125
lists of numbers of rays.
126
127
128
4.6 Fan: Examples
129
130
131
4.6-1 Fan example
132
133
 Example 
134
gap> F := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );
135
<A fan in |R^2>
136
gap> RayGenerators( F );
137
[ [ -1, 5 ], [ 0, 1 ], [ 1, 0 ], [ 0, -1 ] ]
138
gap> RaysInMaximalCones( F );
139
[ [ 1, 1, 0, 0 ], [ 0, 1, 1, 0 ], [ 0, 0, 1, 1 ], [ 1, 0, 0, 1 ] ]
140
gap> IsRegularFan( F );
141
true
142
gap> IsComplete( F );
143
true
144
gap> IsSmooth( F );
145
true
146
gap> F1 := MaximalCones( F )[ 1 ];
147
<A cone in |R^2>
148
gap> DualCone( F1 );
149
<A cone in |R^2>
150
gap> RayGenerators( F1 );
151
[ [ -1, 5 ], [ 0, 1 ] ]
152
gap> F2 := StarSubdivisionOfIthMaximalCone( F, 1 );
153
<A fan in |R^2>
154
gap> IsSmooth( F2 );
155
true
156
gap> RayGenerators( F2 );
157
[ [ -1, 5 ], [ -1, 6 ], [ 0, -1 ], [ 0, 1 ], [ 1, 0 ] ]
158

159
160
161