Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YFan[133X[101X234[1X4.1 [33X[0;0YFan: Category and Representations[133X[101X56[1X4.1-1 IsFan[101X78[29X[2XIsFan[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a fan. Every fan is a convex object.[133X1213[33X[0;0YRemember: Every fan is a convex object.[133X141516[1X4.2 [33X[0;0YFan: Properties[133X[101X1718[1X4.2-1 IsComplete[101X1920[29X[2XIsComplete[102X( [3Xfan[103X ) [32X property21[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2223[33X[0;0YChecks if the fan [3Xfan[103X is complete, i. e. if it's support is the whole space.[133X2425[1X4.2-2 IsPointed[101X2627[29X[2XIsPointed[102X( [3Xfan[103X ) [32X property28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YChecks if the fan [3Xfan[103X is pointed, which means that every cone it contains is31strictly convex.[133X3233[1X4.2-3 IsSmooth[101X3435[29X[2XIsSmooth[102X( [3Xfan[103X ) [32X property36[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3738[33X[0;0YChecks if the fan [3Xfan[103X is smooth, i. e. if every cone in the fan is smooth.[133X3940[1X4.2-4 IsRegularFan[101X4142[29X[2XIsRegularFan[102X( [3Xfan[103X ) [32X property43[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4445[33X[0;0YChecks if the fan [3Xfan[103X is regular, i. e. if it is the normal fan of a46polytope.[133X4748[1X4.2-5 IsSimplicial[101X4950[29X[2XIsSimplicial[102X( [3Xfan[103X ) [32X property51[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5253[33X[0;0YChecks if the fan [3Xfan[103X is simplicial, i. e. if every cone in the fan is54simplicial.[133X5556[1X4.2-6 HasConvexSupport[101X5758[29X[2XHasConvexSupport[102X( [3Xfan[103X ) [32X property59[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6061[33X[0;0YChecks if the fan [3Xfan[103X is simplicial, i. e. if every cone in the fan is62simplicial.[133X636465[1X4.3 [33X[0;0YFan: Attributes[133X[101X6667[1X4.3-1 Rays[101X6869[29X[2XRays[102X( [3Xfan[103X ) [32X attribute70[6XReturns:[106X [33X[0;10Ya list[133X7172[33X[0;0YReturns the rays of the fan [3Xfan[103X as a list of cones.[133X7374[1X4.3-2 RayGenerators[101X7576[29X[2XRayGenerators[102X( [3Xfan[103X ) [32X attribute77[6XReturns:[106X [33X[0;10Ya list[133X7879[33X[0;0YReturns the generators rays of the fan [3Xfan[103X as a list of of list of integers.[133X8081[1X4.3-3 RaysInMaximalCones[101X8283[29X[2XRaysInMaximalCones[102X( [3Xfan[103X ) [32X attribute84[6XReturns:[106X [33X[0;10Ya list[133X8586[33X[0;0YReturns a list of lists, which represent an incidence matrix for the87correspondence of the rays and the maximal cones of the fan [3Xfan[103X. The ith88list in the result represents the ith maximal cone of [3Xfan[103X. In such a list,89the jth entry is 1 if the jth ray is in the cone, 0 otherwise.[133X9091[1X4.3-4 MaximalCones[101X9293[29X[2XMaximalCones[102X( [3Xfan[103X ) [32X attribute94[6XReturns:[106X [33X[0;10Ya list[133X9596[33X[0;0YReturns the maximal cones of the fan [3Xfan[103X as a list of cones.[133X979899[1X4.4 [33X[0;0YFan: Methods[133X[101X100101[1X4.4-1 *[101X102103[29X[2X*[102X( [3Xfan1[103X, [3Xfan2[103X ) [32X operation104[6XReturns:[106X [33X[0;10Ya fan[133X105106[33X[0;0YReturns the product of the fans [3Xfan1[103X and [3Xfan2[103X.[133X107108109[1X4.5 [33X[0;0YFan: Constructors[133X[101X110111[1X4.5-1 Fan[101X112113[29X[2XFan[102X( [3Xfan[103X ) [32X operation114[6XReturns:[106X [33X[0;10Ya fan[133X115116[33X[0;0YCopy constructor for fans. For completeness reasons.[133X117118[1X4.5-2 Fan[101X119120[29X[2XFan[102X( [3Xrays[103X, [3Xcones[103X ) [32X operation121[6XReturns:[106X [33X[0;10Ya fan[133X122123[33X[0;0YConstructs the fan out of the given [3Xrays[103X and a list of [3Xcones[103X given by a124lists of numbers of rays.[133X125126127[1X4.6 [33X[0;0YFan: Examples[133X[101X128129130[1X4.6-1 [33X[0;0YFan example[133X[101X131132[4X[32X Example [32X[104X133[4X[25Xgap>[125X [27XF := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );[127X[104X134[4X[28X<A fan in |R^2>[128X[104X135[4X[25Xgap>[125X [27XRayGenerators( F );[127X[104X136[4X[28X[ [ -1, 5 ], [ 0, 1 ], [ 1, 0 ], [ 0, -1 ] ][128X[104X137[4X[25Xgap>[125X [27XRaysInMaximalCones( F );[127X[104X138[4X[28X[ [ 1, 1, 0, 0 ], [ 0, 1, 1, 0 ], [ 0, 0, 1, 1 ], [ 1, 0, 0, 1 ] ][128X[104X139[4X[25Xgap>[125X [27XIsRegularFan( F );[127X[104X140[4X[28Xtrue[128X[104X141[4X[25Xgap>[125X [27XIsComplete( F );[127X[104X142[4X[28Xtrue[128X[104X143[4X[25Xgap>[125X [27XIsSmooth( F );[127X[104X144[4X[28Xtrue[128X[104X145[4X[25Xgap>[125X [27XF1 := MaximalCones( F )[ 1 ];[127X[104X146[4X[28X<A cone in |R^2>[128X[104X147[4X[25Xgap>[125X [27XDualCone( F1 );[127X[104X148[4X[28X<A cone in |R^2>[128X[104X149[4X[25Xgap>[125X [27XRayGenerators( F1 );[127X[104X150[4X[28X[ [ -1, 5 ], [ 0, 1 ] ][128X[104X151[4X[25Xgap>[125X [27XF2 := StarSubdivisionOfIthMaximalCone( F, 1 );[127X[104X152[4X[28X<A fan in |R^2>[128X[104X153[4X[25Xgap>[125X [27XIsSmooth( F2 );[127X[104X154[4X[28Xtrue[128X[104X155[4X[25Xgap>[125X [27XRayGenerators( F2 );[127X[104X156[4X[28X[ [ -1, 5 ], [ -1, 6 ], [ 0, -1 ], [ 0, 1 ], [ 1, 0 ] ][128X[104X157[4X[32X[104X158159160161