Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YAffine toric varieties[133X[101X234[1X5.1 [33X[0;0YAffine toric varieties: Category and Representations[133X[101X56[1X5.1-1 IsAffineToricVariety[101X78[29X[2XIsAffineToricVariety[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of an affine toric variety. All affine toric varieties are12toric varieties, so everything applicable to toric varieties is applicable13to affine toric varieties.[133X141516[1X5.2 [33X[0;0YAffine toric varieties: Properties[133X[101X1718[33X[0;0YAffine toric varieties have no additional properties. Remember that affine19toric varieties are toric varieties, so every property of a toric variety is20a property of an affine toric variety.[133X212223[1X5.3 [33X[0;0YAffine toric varieties: Attributes[133X[101X2425[1X5.3-1 CoordinateRing[101X2627[29X[2XCoordinateRing[102X( [3Xvari[103X ) [32X attribute28[6XReturns:[106X [33X[0;10Ya ring[133X2930[33X[0;0YReturns the coordinate ring of the affine toric variety [3Xvari[103X. The31computation is mainly done in ToricIdeals package.[133X3233[1X5.3-2 ListOfVariablesOfCoordinateRing[101X3435[29X[2XListOfVariablesOfCoordinateRing[102X( [3Xvari[103X ) [32X attribute36[6XReturns:[106X [33X[0;10Ya list[133X3738[33X[0;0YReturns a list containing the variables of the CoordinateRing of the variety39[3Xvari[103X.[133X4041[1X5.3-3 MorphismFromCoordinateRingToCoordinateRingOfTorus[101X4243[29X[2XMorphismFromCoordinateRingToCoordinateRingOfTorus[102X( [3Xvari[103X ) [32X attribute44[6XReturns:[106X [33X[0;10Ya morphism[133X4546[33X[0;0YReturns the morphism between the coordinate ring of the variety [3Xvari[103X and the47coordinate ring of its torus. This defines the embedding of the torus in the48variety.[133X4950[1X5.3-4 ConeOfVariety[101X5152[29X[2XConeOfVariety[102X( [3Xvari[103X ) [32X attribute53[6XReturns:[106X [33X[0;10Ya cone[133X5455[33X[0;0YReturns the cone ring of the affine toric variety [3Xvari[103X.[133X565758[1X5.4 [33X[0;0YAffine toric varieties: Methods[133X[101X5960[1X5.4-1 CoordinateRing[101X6162[29X[2XCoordinateRing[102X( [3Xvari[103X, [3Xindet[103X ) [32X operation63[6XReturns:[106X [33X[0;10Ya variety[133X6465[33X[0;0YComputes the coordinate ring of the affine toric variety [3Xvari[103X with66indeterminates [3Xindet[103X.[133X6768[1X5.4-2 Cone[101X6970[29X[2XCone[102X( [3Xvari[103X ) [32X operation71[6XReturns:[106X [33X[0;10Ya cone[133X7273[33X[0;0YReturns the cone of the variety [3Xvari[103X. Another name for ConeOfVariety for74compatibility and shortness.[133X757677[1X5.5 [33X[0;0YAffine toric varieties: Constructors[133X[101X7879[33X[0;0YThe constructors are the same as for toric varieties. Calling them with a80cone will result in an affine variety.[133X818283[1X5.6 [33X[0;0YAffine toric Varieties: Examples[133X[101X848586[1X5.6-1 [33X[0;0YAffine space[133X[101X8788[4X[32X Example [32X[104X89[4X[25Xgap>[125X [27XC:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );[127X[104X90[4X[28X<A cone in |R^3>[128X[104X91[4X[25Xgap>[125X [27XC3:=ToricVariety(C);[127X[104X92[4X[28X<An affine normal toric variety of dimension 3>[128X[104X93[4X[25Xgap>[125X [27XDimension(C3);[127X[104X94[4X[28X3[128X[104X95[4X[25Xgap>[125X [27XIsOrbifold(C3);[127X[104X96[4X[28Xtrue[128X[104X97[4X[25Xgap>[125X [27XIsSmooth(C3);[127X[104X98[4X[28Xtrue[128X[104X99[4X[25Xgap>[125X [27XCoordinateRingOfTorus(C3,"x");[127X[104X100[4X[28XQ[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 )[128X[104X101[4X[25Xgap>[125X [27XCoordinateRing(C3,"x");[127X[104X102[4X[28XQ[x_1,x_2,x_3][128X[104X103[4X[25Xgap>[125X [27XMorphismFromCoordinateRingToCoordinateRingOfTorus(C3);[127X[104X104[4X[28X<A monomorphism of rings>[128X[104X105[4X[25Xgap>[125X [27XC3;[127X[104X106[4X[28X<An affine normal smooth toric variety of dimension 3>[128X[104X107[4X[25Xgap>[125X [27XStructureDescription(C3);[127X[104X108[4X[28X"|A^3"[128X[104X109[4X[32X[104X110111112113