CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
5 Affine toric varieties
3
4
5
5.1 Affine toric varieties: Category and Representations
6
7
5.1-1 IsAffineToricVariety
8
9
IsAffineToricVariety( M )  Category
10
Returns: true or false
11
12
The GAP category of an affine toric variety. All affine toric varieties are
13
toric varieties, so everything applicable to toric varieties is applicable
14
to affine toric varieties.
15
16
17
5.2 Affine toric varieties: Properties
18
19
Affine toric varieties have no additional properties. Remember that affine
20
toric varieties are toric varieties, so every property of a toric variety is
21
a property of an affine toric variety.
22
23
24
5.3 Affine toric varieties: Attributes
25
26
5.3-1 CoordinateRing
27
28
CoordinateRing( vari )  attribute
29
Returns: a ring
30
31
Returns the coordinate ring of the affine toric variety vari. The
32
computation is mainly done in ToricIdeals package.
33
34
5.3-2 ListOfVariablesOfCoordinateRing
35
36
ListOfVariablesOfCoordinateRing( vari )  attribute
37
Returns: a list
38
39
Returns a list containing the variables of the CoordinateRing of the variety
40
vari.
41
42
5.3-3 MorphismFromCoordinateRingToCoordinateRingOfTorus
43
44
MorphismFromCoordinateRingToCoordinateRingOfTorus( vari )  attribute
45
Returns: a morphism
46
47
Returns the morphism between the coordinate ring of the variety vari and the
48
coordinate ring of its torus. This defines the embedding of the torus in the
49
variety.
50
51
5.3-4 ConeOfVariety
52
53
ConeOfVariety( vari )  attribute
54
Returns: a cone
55
56
Returns the cone ring of the affine toric variety vari.
57
58
59
5.4 Affine toric varieties: Methods
60
61
5.4-1 CoordinateRing
62
63
CoordinateRing( vari, indet )  operation
64
Returns: a variety
65
66
Computes the coordinate ring of the affine toric variety vari with
67
indeterminates indet.
68
69
5.4-2 Cone
70
71
Cone( vari )  operation
72
Returns: a cone
73
74
Returns the cone of the variety vari. Another name for ConeOfVariety for
75
compatibility and shortness.
76
77
78
5.5 Affine toric varieties: Constructors
79
80
The constructors are the same as for toric varieties. Calling them with a
81
cone will result in an affine variety.
82
83
84
5.6 Affine toric Varieties: Examples
85
86
87
5.6-1 Affine space
88
89
 Example 
90
gap> C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );
91
<A cone in |R^3>
92
gap> C3:=ToricVariety(C);
93
<An affine normal toric variety of dimension 3>
94
gap> Dimension(C3);
95
3
96
gap> IsOrbifold(C3);
97
true
98
gap> IsSmooth(C3);
99
true
100
gap> CoordinateRingOfTorus(C3,"x");
101
Q[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 )
102
gap> CoordinateRing(C3,"x");
103
Q[x_1,x_2,x_3]
104
gap> MorphismFromCoordinateRingToCoordinateRingOfTorus(C3);
105
<A monomorphism of rings>
106
gap> C3;
107
<An affine normal smooth toric variety of dimension 3>
108
gap> StructureDescription(C3);
109
"|A^3"
110

111
112
113