Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

610956 views
1
2
3
References
4
5
[And00] Andaloro, P., On Total Stopping Times under 3x+1 Iteration,
6
Fibonacci Quarterly, 38 (2000), 73-78.
7
8
[Bar15] Bartholdi, L.,  FR -- Computations with functionally recursive
9
groups. Version 2.2.1  (2015), (( GAP package,
10
http://www.gap-system.org/Packages/fr.html )).
11
12
[dlH00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures
13
in Mathematics (2000).
14
15
[EHN13] Eick, B., Horn, M. and Nickel, W.,  Polycyclic -- Computation with
16
polycyclic groups (Version 2.11)  (2013), (( GAP package,
17
http://www.gap-system.org/Packages/polycyclic.html )).
18
19
[GKW16] Gutsche, S., Kohl, S. and Wensley, C.,  Utils - Utility functions in
20
GAP (Version 0.38)  (2016), (( GAP package,
21
http://www.gap-system.org/Packages/utils.html )).
22
23
[Gri80] Grigorchuk, R. I., Burnside's Problem on Periodic Groups, Functional
24
Anal. Appl., 14 (1980), 41-43.
25
26
[GT02] Gluck, D. and Taylor, B. D., A New Statistic for the 3x+1 Problem,
27
Proc. Amer. Math. Soc., 130, 5 (2002), 1293-1301.
28
29
[HEO05] Holt, D. F., Eick, B. and O'Brien, E. A., Handbook of Computational
30
Group Theory, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and
31
its Applications (Boca Raton) (2005), xvi+514 pages.
32
33
[Hig74] Higman, G., Finitely Presented Infinite Simple Groups, Department of
34
Pure Mathematics, Australian National University, Canberra, Notes on Pure
35
Mathematics (1974).
36
37
[Kel99] Keller, T. P., Finite Cycles of Certain Periodically Linear
38
Permutations, Missouri J. Math. Sci., 11, 3 (1999), 152-157.
39
40
[Koh05] Kohl, S., Restklassenweise affine Gruppen, Dissertation, Universität
41
Stuttgart (2005), ((http://d-nb.info/977164071)).
42
43
[Koh07a] Kohl, S.,  Graph Theoretical Criteria for the Wildness of
44
Residue-Class-Wise Affine Permutations  (2007), (( Preprint (short note),
45
http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf
46
)).
47
48
[Koh07b] Kohl, S.,  Wildness of Iteration of Certain Residue-Class-Wise
49
Affine Mappings , Adv. in Appl. Math., 39, 3 (2007), 322-328,
50
((DOI: 10.1016/j.aam.2006.08.003)).
51
52
[Koh08] Kohl, S.,  Algorithms for a Class of Infinite Permutation Groups ,
53
J. Symb. Comput., 43, 8 (2008), 545-581, ((DOI: 10.1016/j.jsc.2007.12.001)).
54
55
[Koh10] Kohl, S.,  A Simple Group Generated by Involutions Interchanging
56
Residue Classes of the Integers , Math. Z., 264, 4 (2010), 927-938,
57
((DOI: 10.1007/s00209-009-0497-8)).
58
59
[Koh13] Kohl, S.,  Simple Groups Generated by Involutions Interchanging
60
Residue Classes Modulo Lattices in Z^d , J. Group Theory, 16, 1 (2013),
61
81-86, ((DOI: 10.1515/jgt-2012-0031)).
62
63
[Lag03] Lagarias, J. C., The 3x+1 Problem: An Annotated Bibliography
64
(2003+), (( http://arxiv.org/abs/math.NT/0309224 (Part I),
65
http://arxiv.org/abs/math.NT/0608208 (Part II) )).
66
67
[LN12] Lübeck, F. and Neunhöffer, M., GAPDoc (Version 1.5.1), RWTH Aachen
68
(2012), (( GAP package, http://www.gap-system.org/Packages/gapdoc.html )).
69
70
[ML87] Matthews, K. R. and Leigh, G. M.,  A Generalization of the Syracuse
71
Algorithm in GF(q)[x] , J. Number Theory, 25 (1987), 274-278.
72
73
[Soi16] Soicher, L., GRAPE -- GRaph Algorithms using PErmutation groups
74
(Version 4.7), Queen Mary, University of London (2016), (( GAP package,
75
http://www.gap-system.org/Packages/grape.html )).
76
77
78
79

80
81