GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
12[1XReferences[101X34[[20XAnd00[120X] [16XAndaloro, P.[116X, [17XOn Total Stopping Times under 3x+1 Iteration[117X,5[18XFibonacci Quarterly[118X, [19X38[119X (2000), 73-78.67[[20XBar15[120X] [16XBartholdi, L.[116X, [17X FR -- Computations with functionally recursive8groups. Version 2.2.1 [117X (2015), (( GAP package,9http://www.gap-system.org/Packages/fr.html )).1011[[20XdlH00[120X] [16Xde la Harpe, P.[116X, [17XTopics in Geometric Group Theory[117X, Chicago Lectures12in Mathematics (2000).1314[[20XEHN13[120X] [16XEick, B., Horn, M. and Nickel, W.[116X, [17X Polycyclic -- Computation with15polycyclic groups (Version 2.11) [117X (2013), (( GAP package,16http://www.gap-system.org/Packages/polycyclic.html )).1718[[20XGKW16[120X] [16XGutsche, S., Kohl, S. and Wensley, C.[116X, [17X Utils - Utility functions in19GAP (Version 0.38) [117X (2016), (( GAP package,20http://www.gap-system.org/Packages/utils.html )).2122[[20XGri80[120X] [16XGrigorchuk, R. I.[116X, [17XBurnside's Problem on Periodic Groups[117X, [18XFunctional23Anal. Appl.[118X, [19X14[119X (1980), 41-43.2425[[20XGT02[120X] [16XGluck, D. and Taylor, B. D.[116X, [17XA New Statistic for the 3x+1 Problem[117X,26[18XProc. Amer. Math. Soc.[118X, [19X130[119X, 5 (2002), 1293-1301.2728[[20XHEO05[120X] [16XHolt, D. F., Eick, B. and O'Brien, E. A.[116X, [17XHandbook of Computational29Group Theory[117X, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and30its Applications (Boca Raton) (2005), xvi+514 pages.3132[[20XHig74[120X] [16XHigman, G.[116X, [17XFinitely Presented Infinite Simple Groups[117X, Department of33Pure Mathematics, Australian National University, Canberra, Notes on Pure34Mathematics (1974).3536[[20XKel99[120X] [16XKeller, T. P.[116X, [17XFinite Cycles of Certain Periodically Linear37Permutations[117X, [18XMissouri J. Math. Sci.[118X, [19X11[119X, 3 (1999), 152-157.3839[[20XKoh05[120X] [16XKohl, S.[116X, [17XRestklassenweise affine Gruppen[117X, Dissertation, Universität40Stuttgart (2005), ((http://d-nb.info/977164071)).4142[[20XKoh07a[120X] [16XKohl, S.[116X, [17X Graph Theoretical Criteria for the Wildness of43Residue-Class-Wise Affine Permutations [117X (2007), (( Preprint (short note),44http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf45)).4647[[20XKoh07b[120X] [16XKohl, S.[116X, [17X Wildness of Iteration of Certain Residue-Class-Wise48Affine Mappings [117X, [18XAdv. in Appl. Math.[118X, [19X39[119X, 3 (2007), 322-328,49((DOI: 10.1016/j.aam.2006.08.003)).5051[[20XKoh08[120X] [16XKohl, S.[116X, [17X Algorithms for a Class of Infinite Permutation Groups [117X,52[18XJ. Symb. Comput.[118X, [19X43[119X, 8 (2008), 545-581, ((DOI: 10.1016/j.jsc.2007.12.001)).5354[[20XKoh10[120X] [16XKohl, S.[116X, [17X A Simple Group Generated by Involutions Interchanging55Residue Classes of the Integers [117X, [18XMath. Z.[118X, [19X264[119X, 4 (2010), 927-938,56((DOI: 10.1007/s00209-009-0497-8)).5758[[20XKoh13[120X] [16XKohl, S.[116X, [17X Simple Groups Generated by Involutions Interchanging59Residue Classes Modulo Lattices in Z^d [117X, [18XJ. Group Theory[118X, [19X16[119X, 1 (2013),6081-86, ((DOI: 10.1515/jgt-2012-0031)).6162[[20XLag03[120X] [16XLagarias, J. C.[116X, [17XThe 3x+1 Problem: An Annotated Bibliography[117X63(2003+), (( http://arxiv.org/abs/math.NT/0309224 (Part I),64http://arxiv.org/abs/math.NT/0608208 (Part II) )).6566[[20XLN12[120X] [16XLübeck, F. and Neunhöffer, M.[116X, [17XGAPDoc (Version 1.5.1)[117X, RWTH Aachen67(2012), (( GAP package, http://www.gap-system.org/Packages/gapdoc.html )).6869[[20XML87[120X] [16XMatthews, K. R. and Leigh, G. M.[116X, [17X A Generalization of the Syracuse70Algorithm in GF(q)[x] [117X, [18XJ. Number Theory[118X, [19X25[119X (1987), 274-278.7172[[20XSoi16[120X] [16XSoicher, L.[116X, [17XGRAPE -- GRaph Algorithms using PErmutation groups73(Version 4.7)[117X, Queen Mary, University of London (2016), (( GAP package,74http://www.gap-system.org/Packages/grape.html )).75767778[32X798081