CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
4 Ring Maps
3
4
5
4.1 Ring Maps: Attributes
6
7
4.1-1 KernelSubobject
8
9
KernelSubobject( phi )  method
10
Returns: a homalg submodule
11
12
The kernel ideal of the ring map phi.
13
14
15
4.2 Ring Maps: Operations and Functions
16
17
4.2-1 SegreMap
18
19
SegreMap( R, s )  method
20
Returns: a homalg ring map
21
22
The ring map corresponding to the Segre embedding of MultiProj(R) into the
23
projective space according to P(W_1)× P(W_2) -> P(W_1⊗ W_2).
24
25
4.2-2 PlueckerMap
26
27
PlueckerMap( l, n, A, s )  method
28
Returns: a homalg ring map
29
30
The ring map corresponding to the Plücker embedding of the Grassmannian
31
G_l(P^n(A))=G_l(P(W)) into the projective space P(⋀^l W), where W=V^* is the
32
A-dual of the free module V=A^n+1 of rank n+1.
33
34
4.2-3 VeroneseMap
35
36
VeroneseMap( n, d, A, s )  method
37
Returns: a homalg ring map
38
39
The ring map corresponding to the Veronese embedding of the projective space
40
P^n(A)=P(W) into the projective space P(S^d W), where W=V^* is the A-dual of
41
the free module V=A^n+1 of rank n+1.
42
43
44