Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X7 [33X[0;0YExamples[133X[101X234[1X7.1 [33X[0;0YBetti Diagrams[133X[101X567[1X7.1-1 [33X[0;0YDE-2.2[133X[101X89[4X[32X Example [32X[104X10[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x0,x1,x2";;[127X[104X11[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X12[4X[25Xgap>[125X [27Xmat := HomalgMatrix( "[ x0^2, x1^2, x2^2 ]", 1, 3, S ); [127X[104X13[4X[28X<A 1 x 3 matrix over a graded ring>[128X[104X14[4X[25Xgap>[125X [27XM := RightPresentationWithDegrees( mat, S );[127X[104X15[4X[28X<A graded cyclic right module on a cyclic generator satisfying 3 relations>[128X[104X16[4X[25Xgap>[125X [27XM := RightPresentationWithDegrees( mat );[127X[104X17[4X[28X<A graded cyclic right module on a cyclic generator satisfying 3 relations>[128X[104X18[4X[25Xgap>[125X [27Xd := Resolution( M );[127X[104X19[4X[28X<A right acyclic complex containing[128X[104X20[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>[128X[104X21[4X[25Xgap>[125X [27Xbetti := BettiTable( d );[127X[104X22[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X23[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>>[128X[104X24[4X[25Xgap>[125X [27XDisplay( betti );[127X[104X25[4X[28X total: 1 3 3 1[128X[104X26[4X[28X----------------[128X[104X27[4X[28X 0: 1 . . .[128X[104X28[4X[28X 1: . 3 . .[128X[104X29[4X[28X 2: . . 3 .[128X[104X30[4X[28X 3: . . . 1[128X[104X31[4X[28X----------------[128X[104X32[4X[28Xdegree: 0 1 2 3[128X[104X33[4X[25Xgap>[125X [27X## we are still below the Castelnuovo-Mumford regularity, which is 3:[127X[104X34[4X[25Xgap>[125X [27XM2 := SubmoduleGeneratedByHomogeneousPart( 2, M );[127X[104X35[4X[28X<A graded torsion right submodule given by 3 generators>[128X[104X36[4X[25Xgap>[125X [27Xd2 := Resolution( M2 );[127X[104X37[4X[28X<A right acyclic complex containing[128X[104X38[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>[128X[104X39[4X[25Xgap>[125X [27Xbetti2 := BettiTable( d2 );[127X[104X40[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X41[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>>[128X[104X42[4X[25Xgap>[125X [27XDisplay( betti2 );[127X[104X43[4X[28X total: 3 8 6 1[128X[104X44[4X[28X----------------[128X[104X45[4X[28X 2: 3 8 6 .[128X[104X46[4X[28X 3: . . . 1[128X[104X47[4X[28X----------------[128X[104X48[4X[28Xdegree: 0 1 2 3[128X[104X49[4X[32X[104X505152[1X7.1-2 [33X[0;0YDE-Code[133X[101X5354[4X[32X Example [32X[104X55[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x0,x1,x2";;[127X[104X56[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X57[4X[25Xgap>[125X [27Xmat := HomalgMatrix( "[ x0^2, x1^2 ]", 1, 2, S );[127X[104X58[4X[28X<A 1 x 2 matrix over a graded ring>[128X[104X59[4X[25Xgap>[125X [27XM := RightPresentationWithDegrees( mat, S );[127X[104X60[4X[28X<A graded cyclic right module on a cyclic generator satisfying 2 relations>[128X[104X61[4X[25Xgap>[125X [27Xd := Resolution( M );[127X[104X62[4X[28X<A right acyclic complex containing[128X[104X63[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>[128X[104X64[4X[25Xgap>[125X [27Xbetti := BettiTable( d );[127X[104X65[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X66[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>>[128X[104X67[4X[25Xgap>[125X [27XDisplay( betti );[127X[104X68[4X[28X total: 1 2 1[128X[104X69[4X[28X--------------[128X[104X70[4X[28X 0: 1 . .[128X[104X71[4X[28X 1: . 2 .[128X[104X72[4X[28X 2: . . 1[128X[104X73[4X[28X--------------[128X[104X74[4X[28Xdegree: 0 1 2[128X[104X75[4X[25Xgap>[125X [27Xm := SubmoduleGeneratedByHomogeneousPart( 2, M );[127X[104X76[4X[28X<A graded torsion right submodule given by 4 generators>[128X[104X77[4X[25Xgap>[125X [27Xd2 := Resolution( m );[127X[104X78[4X[28X<A right acyclic complex containing[128X[104X79[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>[128X[104X80[4X[25Xgap>[125X [27Xbetti2 := BettiTable( d2 );[127X[104X81[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X82[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>>[128X[104X83[4X[25Xgap>[125X [27XDisplay( betti2 );[127X[104X84[4X[28X 2: 4 8 4[128X[104X85[4X[28X--------------[128X[104X86[4X[28Xdegree: 0 1 2[128X[104X87[4X[32X[104X888990[1X7.1-3 [33X[0;0YSchenck-3.2[133X[101X9192[33X[0;0YThis is an example from Section 3.2 in [Sch03].[133X9394[4X[32X Example [32X[104X95[4X[25Xgap>[125X [27XQxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X96[4X[25Xgap>[125X [27Xmmat := HomalgMatrix( "[ x, x^3 + y^3 + z^3 ]", 1, 2, Qxyz );[127X[104X97[4X[28X<A 1 x 2 matrix over an external ring>[128X[104X98[4X[25Xgap>[125X [27XS := GradedRing( Qxyz );;[127X[104X99[4X[25Xgap>[125X [27XM := RightPresentationWithDegrees( mmat, S );[127X[104X100[4X[28X<A graded cyclic right module on a cyclic generator satisfying 2 relations>[128X[104X101[4X[25Xgap>[125X [27XMr := Resolution( M );[127X[104X102[4X[28X<A right acyclic complex containing[128X[104X103[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>[128X[104X104[4X[25Xgap>[125X [27XbettiM := BettiTable( Mr );[127X[104X105[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X106[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>>[128X[104X107[4X[25Xgap>[125X [27XDisplay( bettiM );[127X[104X108[4X[28X total: 1 2 1[128X[104X109[4X[28X--------------[128X[104X110[4X[28X 0: 1 1 .[128X[104X111[4X[28X 1: . . .[128X[104X112[4X[28X 2: . 1 1[128X[104X113[4X[28X--------------[128X[104X114[4X[28Xdegree: 0 1 2[128X[104X115[4X[25Xgap>[125X [27XR := GradedRing( CoefficientsRing( S ) * "x,y,z,w" );;[127X[104X116[4X[25Xgap>[125X [27Xnmat := HomalgMatrix( "[ z^2 - y*w, y*z - x*w, y^2 - x*z ]", 1, 3, R );[127X[104X117[4X[28X<A 1 x 3 matrix over a graded ring>[128X[104X118[4X[25Xgap>[125X [27XN := RightPresentationWithDegrees( nmat );[127X[104X119[4X[28X<A graded cyclic right module on a cyclic generator satisfying 3 relations>[128X[104X120[4X[25Xgap>[125X [27XNr := Resolution( N );[127X[104X121[4X[28X<A right acyclic complex containing[128X[104X122[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>[128X[104X123[4X[25Xgap>[125X [27XbettiN := BettiTable( Nr );[127X[104X124[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X125[4X[28X2 morphisms of graded right modules at degrees [ 0 .. 2 ]>>[128X[104X126[4X[25Xgap>[125X [27XDisplay( bettiN );[127X[104X127[4X[28X total: 1 3 2[128X[104X128[4X[28X--------------[128X[104X129[4X[28X 0: 1 . .[128X[104X130[4X[28X 1: . 3 2[128X[104X131[4X[28X--------------[128X[104X132[4X[28Xdegree: 0 1 2[128X[104X133[4X[32X[104X134135136[1X7.1-4 [33X[0;0YSchenck-8.3[133X[101X137138[33X[0;0YThis is an example from Section 8.3 in [Sch03].[133X139140[4X[32X Example [32X[104X141[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z,w";;[127X[104X142[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X143[4X[25Xgap>[125X [27Xjmat := HomalgMatrix( "[ z*w, x*w, y*z, x*y, x^3*z - x*z^3 ]", 1, 5, S );[127X[104X144[4X[28X<A 1 x 5 matrix over a graded ring>[128X[104X145[4X[25Xgap>[125X [27XJ := RightPresentationWithDegrees( jmat );[127X[104X146[4X[28X<A graded cyclic right module on a cyclic generator satisfying 5 relations>[128X[104X147[4X[25Xgap>[125X [27XJr := Resolution( J );[127X[104X148[4X[28X<A right acyclic complex containing[128X[104X149[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>[128X[104X150[4X[25Xgap>[125X [27Xbetti := BettiTable( Jr );[127X[104X151[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X152[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>>[128X[104X153[4X[25Xgap>[125X [27XDisplay( betti );[127X[104X154[4X[28X total: 1 5 6 2[128X[104X155[4X[28X----------------[128X[104X156[4X[28X 0: 1 . . .[128X[104X157[4X[28X 1: . 4 4 1[128X[104X158[4X[28X 2: . . . .[128X[104X159[4X[28X 3: . 1 2 1[128X[104X160[4X[28X----------------[128X[104X161[4X[28Xdegree: 0 1 2 3[128X[104X162[4X[32X[104X163164165[1X7.1-5 [33X[0;0YSchenck-8.3.3[133X[101X166167[33X[0;0YThis is Exercise 8.3.3 in [Sch03].[133X168169[4X[32X Example [32X[104X170[4X[25Xgap>[125X [27XQxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X171[4X[25Xgap>[125X [27XS := GradedRing( Qxyz );;[127X[104X172[4X[25Xgap>[125X [27Xmat := HomalgMatrix( "[ x*y*z, x*y^2, x^2*z, x^2*y, x^3 ]", 1, 5, S );[127X[104X173[4X[28X<A 1 x 5 matrix over a graded ring>[128X[104X174[4X[25Xgap>[125X [27XM := RightPresentationWithDegrees( mat, S );[127X[104X175[4X[28X<A graded cyclic right module on a cyclic generator satisfying 5 relations>[128X[104X176[4X[25Xgap>[125X [27XMr := Resolution( M );[127X[104X177[4X[28X<A right acyclic complex containing[128X[104X178[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>[128X[104X179[4X[25Xgap>[125X [27Xbetti := BettiTable( Mr );[127X[104X180[4X[28X<A Betti diagram of <A right acyclic complex containing[128X[104X181[4X[28X3 morphisms of graded right modules at degrees [ 0 .. 3 ]>>[128X[104X182[4X[25Xgap>[125X [27XDisplay( betti );[127X[104X183[4X[28X total: 1 5 6 2[128X[104X184[4X[28X----------------[128X[104X185[4X[28X 0: 1 . . .[128X[104X186[4X[28X 1: . . . .[128X[104X187[4X[28X 2: . 5 6 2[128X[104X188[4X[28X----------------[128X[104X189[4X[28Xdegree: 0 1 2 3[128X[104X190[4X[32X[104X191192193[1X7.2 [33X[0;0YCommutative Algebra[133X[101X194195196[1X7.2-1 [33X[0;0YSaturate[133X[101X197198[4X[32X Example [32X[104X199[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X200[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X201[4X[25Xgap>[125X [27Xm := GradedLeftSubmodule( "x,y,z", S );[127X[104X202[4X[28X<A graded torsion-free (left) ideal given by 3 generators>[128X[104X203[4X[25Xgap>[125X [27XI := Intersect( m^3, GradedLeftSubmodule( "x", S ) );[127X[104X204[4X[28X<A graded torsion-free (left) ideal given by 6 generators>[128X[104X205[4X[25Xgap>[125X [27XNrRelations( I );[127X[104X206[4X[28X8[128X[104X207[4X[25Xgap>[125X [27XIm := SubobjectQuotient( I, m );[127X[104X208[4X[28X<A graded torsion-free rank 1 (left) ideal given by 3 generators>[128X[104X209[4X[25Xgap>[125X [27XI_m := Saturate( I, m );[127X[104X210[4X[28X<A graded principal (left) ideal of rank 1 on a free generator>[128X[104X211[4X[25Xgap>[125X [27XIs := Saturate( I );[127X[104X212[4X[28X<A graded principal (left) ideal of rank 1 on a free generator>[128X[104X213[4X[25Xgap>[125X [27XAssert( 0, Is = I_m );[127X[104X214[4X[32X[104X215216217[1X7.3 [33X[0;0YGlobal Section Modules of the Induced Sheaves[133X[101X218219220[1X7.3-1 [33X[0;0YExamples of the ModuleOfGlobalSections Functor and Purity Filtrations[133X[101X221222[4X[32X Example [32X[104X223[4X[25Xgap>[125X [27XLoadPackage( "GradedRingForHomalg" );;[127X[104X224[4X[25Xgap>[125X [27XQxyzt := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z,t";;[127X[104X225[4X[25Xgap>[125X [27XS := GradedRing( Qxyzt );;[127X[104X226[4X[25Xgap>[125X [27X[127X[104X227[4X[25Xgap>[125X [27Xwmat := HomalgMatrix( "[ \[127X[104X228[4X[25X>[125X [27Xx*y, y*z, z*t, 0, 0, 0,\[127X[104X229[4X[25X>[125X [27Xx^3*z,x^2*z^2,0, x*z^2*t, -z^2*t^2, 0,\[127X[104X230[4X[25X>[125X [27Xx^4, x^3*z, 0, x^2*z*t, -x*z*t^2, 0,\[127X[104X231[4X[25X>[125X [27X0, 0, x*y, -y^2, x^2-t^2, 0,\[127X[104X232[4X[25X>[125X [27X0, 0, x^2*z, -x*y*z, y*z*t, 0,\[127X[104X233[4X[25X>[125X [27X0, 0, x^2*y-x^2*t,-x*y^2+x*y*t,y^2*t-y*t^2,0,\[127X[104X234[4X[25X>[125X [27X0, 0, 0, 0, -1, 1 \[127X[104X235[4X[25X>[125X [27X]", 7, 6, Qxyzt );;[127X[104X236[4X[25Xgap>[125X [27X[127X[104X237[4X[25Xgap>[125X [27XLoadPackage( "GradedModules" );;[127X[104X238[4X[25Xgap>[125X [27Xwmor := GradedMap( wmat, "free", "free", "left", S );;[127X[104X239[4X[25Xgap>[125X [27XIsMorphism( wmor );;[127X[104X240[4X[25Xgap>[125X [27XW := LeftPresentationWithDegrees( wmat, S );;[127X[104X241[4X[25Xgap>[125X [27XHW := ModuleOfGlobalSections( W );[127X[104X242[4X[28X<A graded left module presented by yet unknown relations for 6 generators>[128X[104X243[4X[25Xgap>[125X [27XLinearStrandOfTateResolution( W, 0,4 );[127X[104X244[4X[28X<A cocomplex containing 4 morphisms of graded left modules at degrees[128X[104X245[4X[28X[ 0 .. 4 ]>[128X[104X246[4X[25Xgap>[125X [27Xpurity_iso := IsomorphismOfFiltration( PurityFiltration( W ) );[127X[104X247[4X[28X<A non-zero isomorphism of graded left modules>[128X[104X248[4X[25Xgap>[125X [27XHpurity_iso := ModuleOfGlobalSections( purity_iso );[127X[104X249[4X[28X<An isomorphism of graded left modules>[128X[104X250[4X[25Xgap>[125X [27XModuleOfGlobalSections( wmor );[127X[104X251[4X[28X<A homomorphism of graded left modules>[128X[104X252[4X[25Xgap>[125X [27XNaturalMapToModuleOfGlobalSections( W );[127X[104X253[4X[28X<A homomorphism of graded left modules>[128X[104X254[4X[32X[104X255256257[1X7.3-2 [33X[0;0YHorrocks Mumford bundle[133X[101X258259[33X[0;0YThis example computes the global sections module of the Horrocks-Mumford260bundle.[133X261262[4X[32X Example [32X[104X263[4X[25Xgap>[125X [27XLoadPackage( "GradedRingForHomalg" );;[127X[104X264[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x0..x4";;[127X[104X265[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X266[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "e0..e4" );;[127X[104X267[4X[25Xgap>[125X [27XLoadPackage( "GradedModules" );;[127X[104X268[4X[25Xgap>[125X [27Xmat := HomalgMatrix( "[ \[127X[104X269[4X[25X>[125X [27Xe1*e4, e2*e0, e3*e1, e4*e2, e0*e3, \[127X[104X270[4X[25X>[125X [27Xe2*e3, e3*e4, e4*e0, e0*e1, e1*e2 \[127X[104X271[4X[25X>[125X [27X]",[127X[104X272[4X[25X>[125X [27X2, 5, A );[127X[104X273[4X[28X<A 2 x 5 matrix over a graded ring>[128X[104X274[4X[25Xgap>[125X [27Xphi := GradedMap( mat, "free", "free", "left", A );;[127X[104X275[4X[25Xgap>[125X [27XIsMorphism( phi );[127X[104X276[4X[28Xtrue[128X[104X277[4X[25Xgap>[125X [27XM := GuessModuleOfGlobalSectionsFromATateMap( 2, phi );[127X[104X278[4X[28X#I GuessModuleOfGlobalSectionsFromATateMap uses a heuristic for efficiency;[128X[104X279[4X[28Xplease check the correctness of the following result[128X[104X280[4X[28X[128X[104X281[4X[28X<A graded left module presented by yet unknown relations for 19 generators>[128X[104X282[4X[25Xgap>[125X [27XIsPure( M );[127X[104X283[4X[28Xtrue[128X[104X284[4X[25Xgap>[125X [27XRank( M );[127X[104X285[4X[28X2 [128X[104X286[4X[25Xgap>[125X [27XDisplay( BettiTable( Resolution( M ) ) );[127X[104X287[4X[28X total: 19 35 20 2[128X[104X288[4X[28X--------------------[128X[104X289[4X[28X 3: 4 . . .[128X[104X290[4X[28X 4: 15 35 20 .[128X[104X291[4X[28X 5: . . . 2[128X[104X292[4X[28X--------------------[128X[104X293[4X[28Xdegree: 0 1 2 3[128X[104X294[4X[25Xgap>[125X [27XDisplay( BettiTable( TateResolution( M, -5, 5 ) ) );[127X[104X295[4X[28Xtotal: 100 37 14 10 5 2 5 10 14 37 100 ? ? ? ?[128X[104X296[4X[28X----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|[128X[104X297[4X[28X 4: 100 35 4 . . . . . . . . 0 0 0 0[128X[104X298[4X[28X 3: * . 2 10 10 5 . . . . . . 0 0 0[128X[104X299[4X[28X 2: * * . . . . . 2 . . . . . 0 0[128X[104X300[4X[28X 1: * * * . . . . . . 5 10 10 2 . 0[128X[104X301[4X[28X 0: * * * * . . . . . . . . 4 35 100[128X[104X302[4X[28X----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---S[128X[104X303[4X[28Xtwist: -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X304[4X[28X-------------------------------------------------------------------[128X[104X305[4X[28XEuler: 100 35 2 -10 -10 -5 0 2 0 -5 -10 -10 2 35 100[128X[104X306[4X[25Xgap>[125X [27XM;[127X[104X307[4X[28X<A graded reflexive non-projective rank 2 left module presented by 94 \[128X[104X308[4X[28Xrelations for 19 generators>[128X[104X309[4X[25Xgap>[125X [27XP := ElementOfGrothendieckGroup( M );[127X[104X310[4X[28X( 2*O_{P^4} - 1*O_{P^3} - 4*O_{P^2} - 2*O_{P^1} ) -> P^4[128X[104X311[4X[25Xgap>[125X [27XP!.DisplayTwistedCoefficients := true;[127X[104X312[4X[28Xtrue[128X[104X313[4X[25Xgap>[125X [27XP;[127X[104X314[4X[28X( 2*O(-3) - 10*O(-2) + 15*O(-1) - 5*O(0) ) -> P^4[128X[104X315[4X[25Xgap>[125X [27Xchi := HilbertPolynomial( M );[127X[104X316[4X[28X1/12*t^4+2/3*t^3-1/12*t^2-17/3*t-5[128X[104X317[4X[25Xgap>[125X [27Xc := ChernPolynomial( M );[127X[104X318[4X[28X( 2 | 1-h+4*h^2 ) -> P^4[128X[104X319[4X[25Xgap>[125X [27XChernPolynomial( M * S^3 );[127X[104X320[4X[28X( 2 | 1+5*h+10*h^2 ) -> P^4[128X[104X321[4X[25Xgap>[125X [27Xch := ChernCharacter( M );[127X[104X322[4X[28X[ 2-u-7*u^2/2!+11*u^3/3!+17*u^4/4! ] -> P^4[128X[104X323[4X[25Xgap>[125X [27XHilbertPolynomial( ch );[127X[104X324[4X[28X1/12*t^4+2/3*t^3-1/12*t^2-17/3*t-5[128X[104X325[4X[25Xgap>[125X [27XList( [ -8 .. 7 ], i -> Value( chi, i ) );[127X[104X326[4X[28X[ 35, 2, -10, -10, -5, 0, 2, 0, -5, -10, -10, 2, 35, 100, 210, 380 ][128X[104X327[4X[25Xgap>[125X [27XHF := HilbertFunction( M );[127X[104X328[4X[28Xfunction( t ) ... end[128X[104X329[4X[25Xgap>[125X [27XList( [ 0 .. 7 ], HF );[127X[104X330[4X[28X[ 0, 0, 0, 4, 35, 100, 210, 380 ][128X[104X331[4X[25Xgap>[125X [27XIndexOfRegularity( M );[127X[104X332[4X[28X4[128X[104X333[4X[25Xgap>[125X [27XDataOfHilbertFunction( M );[127X[104X334[4X[28X[ [ [ 4 ], [ 3 ] ], 1/12*t^4+2/3*t^3-1/12*t^2-17/3*t-5 ][128X[104X335[4X[32X[104X336337338339