Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YRing Maps[133X[101X23[33X[0;0YA [5Xhomalg[105X ring map is a data structure for maps between finitely generated4rings. [5Xhomalg[105X more or less provides the basic declarations and installs the5generic methods for ring maps, but it is up to other high level packages to6install methods applicable to specific rings. For example, the package7[5XSheaves[105X provides methods for ring maps of (finitely generated) affine rings.[133X8910[1X4.1 [33X[0;0YRing Maps: Category and Representations[133X[101X1112[1X4.1-1 IsHomalgRingMap[101X1314[29X[2XIsHomalgRingMap[102X( [3Xphi[103X ) [32X Category15[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1617[33X[0;0YThe [5XGAP[105X category of ring maps.[133X1819[1X4.1-2 IsHomalgRingSelfMap[101X2021[29X[2XIsHomalgRingSelfMap[102X( [3Xphi[103X ) [32X Category22[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2324[33X[0;0YThe [5XGAP[105X category of ring self-maps.[133X2526[33X[0;0Y(It is a subcategory of the [5XGAP[105X category [10XIsHomalgRingMap[110X.)[133X2728[1X4.1-3 IsHomalgRingMapRep[101X2930[29X[2XIsHomalgRingMapRep[102X( [3Xphi[103X ) [32X Representation31[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3233[33X[0;0YThe [5XGAP[105X representation of [5Xhomalg[105X ring maps.[133X3435[33X[0;0Y(It is a representation of the [5XGAP[105X category [2XIsHomalgRingMap[102X ([14X4.1-1[114X).)[133X363738[1X4.2 [33X[0;0YRing Maps: Constructors[133X[101X3940[1X4.2-1 RingMap[101X4142[29X[2XRingMap[102X( [3Ximages[103X, [3XS[103X, [3XT[103X ) [32X operation43[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring map[133X4445[33X[0;0YThis constructor returns a ring map (homomorphism) of finitely generated46rings/algebras. It is represented by the images [3Ximages[103X of the set of47generators of the source [5Xhomalg[105X ring [3XS[103X in terms of the generators of the48target ring [3XT[103X (--> [14X3.2[114X). Unless the source ring is free [13Xand[113X given on free49ring/algebra generators the returned map will cautiously be indicated using50parenthesis: [21Xhomomorphism[121X. To verify if the result is indeed a well defined51map use [2XIsMorphism[102X ([14X4.3-1[114X). If source and target are identical objects, and52only then, the ring map is created as a selfmap.[133X535455[1X4.3 [33X[0;0YRing Maps: Properties[133X[101X5657[1X4.3-1 IsMorphism[101X5859[29X[2XIsMorphism[102X( [3Xphi[103X ) [32X property60[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6162[33X[0;0YCheck if [3Xphi[103X is a well-defined map, i.e. independent of all involved63presentations.[133X6465[1X4.3-2 IsIdentityMorphism[101X6667[29X[2XIsIdentityMorphism[102X( [3Xphi[103X ) [32X property68[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6970[33X[0;0YCheck if the [5Xhomalg[105X ring map [3Xphi[103X is the identity morphism.[133X7172[1X4.3-3 IsMonomorphism[101X7374[29X[2XIsMonomorphism[102X( [3Xphi[103X ) [32X property75[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X7677[33X[0;0YCheck if the [5Xhomalg[105X ring map [3Xphi[103X is a monomorphism.[133X7879[1X4.3-4 IsEpimorphism[101X8081[29X[2XIsEpimorphism[102X( [3Xphi[103X ) [32X property82[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X8384[33X[0;0YCheck if the [5Xhomalg[105X ring map [3Xphi[103X is an epimorphism.[133X8586[1X4.3-5 IsIsomorphism[101X8788[29X[2XIsIsomorphism[102X( [3Xphi[103X ) [32X property89[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X9091[33X[0;0YCheck if the [5Xhomalg[105X ring map [3Xphi[103X is an isomorphism.[133X9293[1X4.3-6 IsAutomorphism[101X9495[29X[2XIsAutomorphism[102X( [3Xphi[103X ) [32X property96[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X9798[33X[0;0YCheck if the [5Xhomalg[105X ring map [3Xphi[103X is an automorphism.[133X99100101[1X4.4 [33X[0;0YRing Maps: Attributes[133X[101X102103[1X4.4-1 Source[101X104105[29X[2XSource[102X( [3Xphi[103X ) [32X attribute106[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X107108[33X[0;0YThe source of the [5Xhomalg[105X ring map [3Xphi[103X.[133X109110[1X4.4-2 Range[101X111112[29X[2XRange[102X( [3Xphi[103X ) [32X attribute113[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X114115[33X[0;0YThe target (range) of the [5Xhomalg[105X ring map [3Xphi[103X.[133X116117[1X4.4-3 DegreeOfMorphism[101X118119[29X[2XDegreeOfMorphism[102X( [3Xphi[103X ) [32X attribute120[6XReturns:[106X [33X[0;10Yan integer[133X121122[33X[0;0YThe degree of the morphism [3Xphi[103X of graded rings.[133X123[33X[0;0Y(no method installed)[133X124125[1X4.4-4 CoordinateRingOfGraph[101X126127[29X[2XCoordinateRingOfGraph[102X( [3Xphi[103X ) [32X attribute128[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X129130[33X[0;0YThe coordinate ring of the graph of the ring map [3Xphi[103X.[133X131132133[1X4.5 [33X[0;0YRing Maps: Operations and Functions[133X[101X134135136137