CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
4 Ring Maps
3
4
A homalg ring map is a data structure for maps between finitely generated
5
rings. homalg more or less provides the basic declarations and installs the
6
generic methods for ring maps, but it is up to other high level packages to
7
install methods applicable to specific rings. For example, the package
8
Sheaves provides methods for ring maps of (finitely generated) affine rings.
9
10
11
4.1 Ring Maps: Category and Representations
12
13
4.1-1 IsHomalgRingMap
14
15
IsHomalgRingMap( phi )  Category
16
Returns: true or false
17
18
The GAP category of ring maps.
19
20
4.1-2 IsHomalgRingSelfMap
21
22
IsHomalgRingSelfMap( phi )  Category
23
Returns: true or false
24
25
The GAP category of ring self-maps.
26
27
(It is a subcategory of the GAP category IsHomalgRingMap.)
28
29
4.1-3 IsHomalgRingMapRep
30
31
IsHomalgRingMapRep( phi )  Representation
32
Returns: true or false
33
34
The GAP representation of homalg ring maps.
35
36
(It is a representation of the GAP category IsHomalgRingMap (4.1-1).)
37
38
39
4.2 Ring Maps: Constructors
40
41
4.2-1 RingMap
42
43
RingMap( images, S, T )  operation
44
Returns: a homalg ring map
45
46
This constructor returns a ring map (homomorphism) of finitely generated
47
rings/algebras. It is represented by the images images of the set of
48
generators of the source homalg ring S in terms of the generators of the
49
target ring T (--> 3.2). Unless the source ring is free and given on free
50
ring/algebra generators the returned map will cautiously be indicated using
51
parenthesis: homomorphism. To verify if the result is indeed a well defined
52
map use IsMorphism (4.3-1). If source and target are identical objects, and
53
only then, the ring map is created as a selfmap.
54
55
56
4.3 Ring Maps: Properties
57
58
4.3-1 IsMorphism
59
60
IsMorphism( phi )  property
61
Returns: true or false
62
63
Check if phi is a well-defined map, i.e. independent of all involved
64
presentations.
65
66
4.3-2 IsIdentityMorphism
67
68
IsIdentityMorphism( phi )  property
69
Returns: true or false
70
71
Check if the homalg ring map phi is the identity morphism.
72
73
4.3-3 IsMonomorphism
74
75
IsMonomorphism( phi )  property
76
Returns: true or false
77
78
Check if the homalg ring map phi is a monomorphism.
79
80
4.3-4 IsEpimorphism
81
82
IsEpimorphism( phi )  property
83
Returns: true or false
84
85
Check if the homalg ring map phi is an epimorphism.
86
87
4.3-5 IsIsomorphism
88
89
IsIsomorphism( phi )  property
90
Returns: true or false
91
92
Check if the homalg ring map phi is an isomorphism.
93
94
4.3-6 IsAutomorphism
95
96
IsAutomorphism( phi )  property
97
Returns: true or false
98
99
Check if the homalg ring map phi is an automorphism.
100
101
102
4.4 Ring Maps: Attributes
103
104
4.4-1 Source
105
106
Source( phi )  attribute
107
Returns: a homalg ring
108
109
The source of the homalg ring map phi.
110
111
4.4-2 Range
112
113
Range( phi )  attribute
114
Returns: a homalg ring
115
116
The target (range) of the homalg ring map phi.
117
118
4.4-3 DegreeOfMorphism
119
120
DegreeOfMorphism( phi )  attribute
121
Returns: an integer
122
123
The degree of the morphism phi of graded rings.
124
(no method installed)
125
126
4.4-4 CoordinateRingOfGraph
127
128
CoordinateRingOfGraph( phi )  attribute
129
Returns: a homalg ring
130
131
The coordinate ring of the graph of the ring map phi.
132
133
134
4.5 Ring Maps: Operations and Functions
135
136
137