Kernel: Python 3 (Anaconda)
In [0]:
In [1]:
In [2]:
Out[2]:
['class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', '']
In [3]:
In [4]:
Out[4]:
In [5]:
In [6]:
In [7]:
Out[7]:
[[ 14.23 1.71 2.43 ..., 5.64 1.04 3.92]
[ 13.2 1.78 2.14 ..., 4.38 1.05 3.4 ]
[ 13.16 2.36 2.67 ..., 5.68 1.03 3.17]
...,
[ 13.27 4.28 2.26 ..., 10.2 0.59 1.56]
[ 13.17 2.59 2.37 ..., 9.3 0.6 1.62]
[ 14.13 4.1 2.74 ..., 9.2 0.61 1.6 ]]
In [8]:
In [9]:
Out[9]:
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
In [10]:
In [11]:
Out[11]:
(178, 2)
In [12]:
Out[12]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
In [13]:
Out[13]:
1.0
In [14]:
Out[14]:
In [15]:
Out[15]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=3, p=2,
weights='distance')
In [16]:
Out[16]:
1.0
In [17]:
Out[17]:
In [18]:
Out[18]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=7, p=2,
weights='distance')
In [19]:
Out[19]:
1.0
In [20]:
Out[20]:
In [0]:
In [0]:
In [0]: